pallidin said:
Sorry for the following long post, but this is from:
http://curious.astro.cornell.edu/question.php?number=192
Note, ignore the "suspended in air" That was from the poster.
"Your question has two answers: an elementary one and a rather subtle one. The elementary answer stems from Newton's laws of gravity. A complete answer, however, was only worked out by Einstein at the start of the last century.
A the simple answer to "why does the Moon stay suspended in the air?" is this: There is a gravitational force between the Moon and the Earth, that tries to pull the Moon toward the latter. This constant tug on the Moon as it moves around the Earth is called a "centripetal" force. This force is balanced by the "centrifugal" force, that pulls on the Earth and keeps the moon in motion. For a technical description of the (subtle) difference between centripetal and centrifugal forces check out this page. It is the balance between the centripetal and centrifugal forces that keep the Moon in orbit around the Earth.
One can be more persistent than that, however, and this is where the subtlety comes about. Why do the centripetal and centrifugal forces exactly balance each other? Because otherwise the Moon would come crashing into Earth. But why does the Moon not come crashing into Earth? Because the centrifugal force exactly balances the centripetal force. The reasoning here is circular: the simple explanation above provides a way of understanding how the Moon stays in orbit around the Earth, but not exactly why. The why was only supplied by Einstein in the early 1900s.
A more thorough answer to "Why does the Moon stay suspended in the air?" is the following. We think that Einstein's Theory of General Relativity explains the properties of space and time in the Universe. Within that theory, objects with mass curve spacetime in their vicinity, and this curvature influences the motions of other objects. The greater the mass and density of the object, the larger the curvature of spacetime that results. So, the Moon orbits the Earth because the Earth curves spacetime in the vicinity of the Moon. Though the Moon itself curves space as well (since it has mass), the curvature in the vicinity of the Moon is dominated by the Earth, which "tells" the Moon to orbit the Earth, given the Moon's current position and motion in the sky. It is this interplay between mass and curvature that causes the gravitational and the centripetal forces in the first place, and thus why the simple explanation holds.
The difference between the two answers is very subtle, but boils down to this:
First case: - Why does the Moon orbit the Earth? It just does. And you can understand how it does by analyzing the forces on the Moon caused by its orbit and finding the forces pushing in and out are equal.
Second case: - Why does the Moon orbit the Earth? Because the Earth distorts spacetime in the vicinity of the Moon, and causes it to orbit the Earth the way it does and the balance of forces to come out the way it does."
This is just totally wrong. If there were really multiple forces acting on the moon which all canceled out exactly, the moon would move in a straight line. This is the essence of Newton's first law (although we can see it just as well by looking at the second law).
Ignoring the (small) effects of the rest of the solar system, the only force acting on the moon is the gravitational force between it and the Earth, which is directed along a line between the centers of the two bodies.
The confusion here stems, not from an additional force, but from a misunderstanding of the connection between forces and motion. Newton's second law tells us that the sum of all the forces acting on an object will be proportional to its
acceleration. In other words, forces
change motion. In this case, since gravity is attractive, the basic change in the moon's motion will be for its path to curve towards the Earth instead of remaining a straight line (which it would be if there were no forces).
In Newton's theory of gravity, it turns out that there are four different shapes that an objects orbit can take, depending on how fast it's moving and how close it comes to the gravitating object. These, however, are relatively difficult parameters to use, so we generally talk about the energy and angular momentum, instead (but, we could transform directly from one of these sets of parameters to the other).
For any given angular momentum, the lowest energy orbit will be a circle. All orbits between this energy and a mechanical energy of 0 will be elliptical. 0 energy orbits are parabolas and posive energy orbits are hyperbolas.
From this, it's clear that any orbit with negative mechanical energy (or, equivalently any bound state orbit) will be a closed path. So, no orbits will lead the moon to progressively spiral towards the earth. If its orbit is already large enough that it doesn't hit the earth, it will stay that way.
To understand why these stable orbits are allowed, we can think about what physically happens in each type of orbit. First, we consider a circular orbit. In this case the object is always moving perpendicularly to the force of gravity. This means that the object must have just exactly the right velocity that it will always fall towards the ground at just the same rate that the ground falls away below it, due to the curvature of Earth's surface.
An elliptical orbit is what happens when the velocity is not just right for that to happen. Let's say it starts off moving too slowly. Then, as it falls in its orbit it gets closer to the earth. But, as it gets closer, it must also speed up due to the conservation of energy. The closer you are to a gravitating object, the more negative your gravitational potential energy becomes. So, for your total energy to be conserved, kinetic energy must increase, meaning increased speed. Eventually a speed will be reached such that the object is falling slower than the ground curves away below it. At this point, it will start moving farther away from the surface. At least until it reaches a point when it is too slow.
The essence of this argument comes down to the conservation of the orbiting body's energy and angular momentum. Only if there is some outside interacting which progressively changes one or both of these parameters is it possible for a stably orbiting body either to crash or to escape.