Why electromagnetic tensor (Faraday 2-form) is exact? (and not closed)

Click For Summary

Discussion Overview

The discussion revolves around the nature of the electromagnetic field tensor (Faraday 2-form) and its characterization as an exact differential form. Participants explore whether there are specific reasons for expecting the tensor to be exact, considering the implications of the Poincaré lemma and the distinction between closed and exact forms.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant questions the expectation that the electromagnetic field tensor F is exact, suggesting it may be closed but not necessarily exact globally.
  • Another participant reiterates that the homogeneous Maxwell equations imply that F is closed, citing the Poincaré lemma which states that locally, F can be expressed as F = dA.
  • A participant acknowledges that while all exact forms are closed, not all closed forms are exact, prompting further inquiry into the reasons for writing F = dA.
  • Examples are provided, such as the "potential vortex," to illustrate scenarios where closed forms may not be exact due to the topology of the space involved.

Areas of Agreement / Disagreement

Participants express differing views on whether the electromagnetic field tensor F is globally exact, with some asserting it is closed globally while others suggest it may not be exact in all cases. The discussion remains unresolved regarding the conditions under which F is considered exact.

Contextual Notes

Participants note the importance of local versus global properties of differential forms and the implications of topology on the exactness of forms.

phoenix95
Gold Member
Messages
81
Reaction score
23
Following from Wikipedia, the covariant formulation of electromagnetic field involves postulating an electromagnetic field tensor(Faraday 2-form) F such that
F=dA
where A is a 1-form, which makes F an exact differential form. However, is there any specific reason for expecting F to be exact? Could it be the case that in general, F is a closed differential form, but by virtue of the Poincare lemma we define F to be this way?
 
Physics news on Phys.org
That's just the homogeneous Maxwell equations, ##\mathrm{d} F=0##. In Ricci-calculus notation that's
$$\partial_{\mu} ^{\dagger} F^{\mu \nu}=\partial_{\mu} \frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}=0.$$
The Poincare lemma tells you that (at least locally) ##F=\mathrm{d} A## or, in Ricci notation,
$$F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}.$$
 
  • Like
Likes   Reactions: phoenix95
vanhees71 said:
That's just the homogeneous Maxwell equations, ##\mathrm{d} F=0##. In Ricci-calculus notation that's
$$\partial_{\mu} ^{\dagger} F^{\mu \nu}=\partial_{\mu} \frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}=0.$$
The Poincare lemma tells you that (at least locally) ##F=\mathrm{d} A## or, in Ricci notation,
$$F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}.$$
Thanks for the reply. I understood that. But as much as I know, not all closed forms are exact (although all exact forms are closed). So is there a specific reason why we always write F=dA? In other words, just because it is closed why do we expect it to be exact?

In your answer, you wrote F=dA at least locally right? So am I right in saying that the differential 2-form F, in general, is not exact globally (although we both agree that F has to be closed globally)?
 
Well, there are examples like the "potential vortex", where you have a multiply connected region, where you have ##\text{curl} \vec{B}=0## everywhere except along an arbitrary infinite line (e.g., along the ##3##-axis of a Cartesian coordinate system) and
$$\vec{B}=\frac{C}{x^2+y^2} \begin{pmatrix}-y \\x \\ 0 \end{pmatrix},$$
which has
$$\int_{K} \mathrm{d} \vec{r} \vec{B}=2 \pi C N$$
for any closed curve ##K##, which winds ##N## times around the ##z##-axis.
 
  • Like
Likes   Reactions: phoenix95

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K