A Why electromagnetic tensor (Faraday 2-form) is exact? (and not closed)

AI Thread Summary
The discussion centers on the nature of the electromagnetic field tensor (Faraday 2-form) F, questioning why it is considered exact (F=dA) rather than merely closed. It acknowledges that while all exact forms are closed, not all closed forms are exact, raising the issue of the conditions under which F is defined as exact. The Poincaré lemma indicates that F can be expressed as the differential of a 1-form A locally, but this does not guarantee global exactness. The example of a potential vortex illustrates a scenario where F is closed globally but not exact due to the topology of the space involved. This highlights the complexities in the relationship between closed and exact forms in electromagnetic theory.
phoenix95
Gold Member
Messages
81
Reaction score
23
Following from Wikipedia, the covariant formulation of electromagnetic field involves postulating an electromagnetic field tensor(Faraday 2-form) F such that
F=dA
where A is a 1-form, which makes F an exact differential form. However, is there any specific reason for expecting F to be exact? Could it be the case that in general, F is a closed differential form, but by virtue of the Poincare lemma we define F to be this way?
 
Physics news on Phys.org
That's just the homogeneous Maxwell equations, ##\mathrm{d} F=0##. In Ricci-calculus notation that's
$$\partial_{\mu} ^{\dagger} F^{\mu \nu}=\partial_{\mu} \frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}=0.$$
The Poincare lemma tells you that (at least locally) ##F=\mathrm{d} A## or, in Ricci notation,
$$F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}.$$
 
vanhees71 said:
That's just the homogeneous Maxwell equations, ##\mathrm{d} F=0##. In Ricci-calculus notation that's
$$\partial_{\mu} ^{\dagger} F^{\mu \nu}=\partial_{\mu} \frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}=0.$$
The Poincare lemma tells you that (at least locally) ##F=\mathrm{d} A## or, in Ricci notation,
$$F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}.$$
Thanks for the reply. I understood that. But as much as I know, not all closed forms are exact (although all exact forms are closed). So is there a specific reason why we always write F=dA? In other words, just because it is closed why do we expect it to be exact?

In your answer, you wrote F=dA at least locally right? So am I right in saying that the differential 2-form F, in general, is not exact globally (although we both agree that F has to be closed globally)?
 
Well, there are examples like the "potential vortex", where you have a multiply connected region, where you have ##\text{curl} \vec{B}=0## everywhere except along an arbitrary infinite line (e.g., along the ##3##-axis of a Cartesian coordinate system) and
$$\vec{B}=\frac{C}{x^2+y^2} \begin{pmatrix}-y \\x \\ 0 \end{pmatrix},$$
which has
$$\int_{K} \mathrm{d} \vec{r} \vec{B}=2 \pi C N$$
for any closed curve ##K##, which winds ##N## times around the ##z##-axis.
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top