Undergrad Why is m_j not a good quantum number in strong-field Zeeman effect?

Click For Summary
The discussion centers on why the quantum number m_j is not considered "good" in the context of the strong-field Zeeman effect, despite the conservation of L_z and S_z leading to the conservation of J_z. The key point is that while J_z is conserved, J itself is not, and m_j corresponds to J, not J_z. This distinction is crucial because a "good" quantum number must be associated with a conserved quantity. The participants question whether eigenstates of J_z could be considered "good" states, but the underlying principle remains that m_j does not qualify due to its association with the non-conserved total angular momentum J. Understanding these relationships is vital for grasping the implications of perturbation theory in quantum mechanics.
Happiness
Messages
686
Reaction score
30
TL;DR
When solving for the correction to the Hamiltonian due to strong-field Zeeman effect (using perturbation theory), why is m_j not a "good" quantum number, given that J_z is conserved too?
This textbook claims ##m_j## is not a "good" quantum number because the total angular momentum (of an electron of a hydrogen atom placed in a strong uniform magnetic field) is not conserved. I don't understand why ##m_j## is not a "good" quantum number.

Screenshot 2024-07-07 at 4.40.30 AM.png


Since ##J=L+S##, ##J_z=L_z+S_z##.
Since ##L_z## and ##S_z## are both conserved, so is ##J_z##.
##J_z## commutes with ##H'_Z## too.
So shouldn't ##m_j## be a "good" quantum number too?

The phrase "good quantum number" relates to the following theorem in perturbation theory:

Screenshot 2024-07-07 at 4.41.34 AM.png

Screenshot 2024-07-07 at 4.41.46 AM.png


The book is "Introduction to Quantum Mechanics", 2nd edition, by David Griffiths.
 
Physics news on Phys.org
Happiness said:
Since ##L_z## and ##S_z## are both conserved, so is ##J_z##.
But ##J## is not, and ##m_j## is a quantum number for ##J##, not ##J_z##.
 
PeterDonis said:
But ##J## is not, and ##m_j## is a quantum number for ##J##, not ##J_z##.

This is the remaining part of the section in the book:
Screenshot 2024-07-07 at 6.46.45 AM.png


From the sentence below [6.81], we can see that eigenstates of ##S_z## and ##L_z## were used as the "good" states ##\ket{nlm_lm_s}## in the perturbation theory in [6.80].

So my question is, aren't eigenstates of ##J_z## "good" states too?

The book did not define quantum numbers explicitly. From what I understand from the book, since ##m_j## is the eigenvalue of operator ##J_z##, ie, ##J_z\psi=\hbar m_j\psi## (where ##\psi## is an eigenstate of ##J_z##), then ##m_j## is the quantum number for ##J_z##. This is how I understand it. (##m_j## is the eigenvalue apart from a factor of ##\hbar##.)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
6K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
5K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 14 ·
Replies
14
Views
3K