Why Is Taking Moments at Point A' Incorrect in Rotational Balance Problems?

AI Thread Summary
Taking moments about point A' in rotational balance problems is incorrect because it neglects the reaction force at that point, which is essential for maintaining static equilibrium. When moments are calculated at point A, the reaction force can be ignored since it acts through that point, simplifying the analysis. The discussion highlights the importance of considering both vertical and horizontal components of forces, particularly the resultant force acting on the gate. It is emphasized that a proper free body diagram must include all forces to satisfy the equilibrium conditions. Ultimately, using point A for moment calculations is more reliable and convenient for solving these problems.
tracker890 Source h
Messages
90
Reaction score
11
Homework Statement
To determine F
Relevant Equations
moment balance equation
1671624792635.png

Please help me to understand why it is wrong to take moment for point ## A’ ## , because I think static equilibrium should be static equilibrium for any point in space.
Method 1:

$$ \sum{M_A=0:} $$

$$ F\cdot R=\left( F_p \right) _x\cdot \left( R-y_p \right) +\left( F_p \right) _y\left( x_p \right) $$

$$ F=\frac{1}{R}\left[ \left( F_p \right) _x\cdot \left( R-y_p \right) +\left( F_p \right) _y\left( x_p \right) \right] ..........\text{(}Ans\text{)} $$
Method 2:

$$ \sum{M_A’=0:} $$

$$ F\cdot R=\left( F_p \right) _x\cdot \left( R-y_p \right) $$

$$ F=\frac{1}{R}\left[ \left( F_p \right) _x\cdot \left( R-y_p \right) \right] ...........\left( wrong\ answer \right) $$
 
Physics news on Phys.org
I think you forgot the torque from weight of the water acting at the centroid? Generally, that is what is needed to find the horizontal position of the center of pressure.
 
erobz said:
I think you forgot the torque from weight of the water.
The force of water acting on the Gate: ##\left( F_p \right) _x\text{、}\left( F_p \right) _y##
reference.
 
tracker890 Source h said:
The force of water acting on the Gate: ##\left( F_p \right) _x\text{、}\left( F_p \right) _y##
reference.

So you are saying that ##F_p## is the force of weight?

Never mind, I think you are saying that ##F_p## is the resultant force acting on the gate. How did you figure out where the ##x## coordinate of ##A'## is?

Also, and maybe this is the problem but there has to be a vertical reaction force acting on the gate? If ##F_p## is the resultant, from what I'm seeing you have shown no vertical reaction force that could possibly balance the vertical component of ##F_p##?
 
Last edited:
erobz said:
So you are saying that ##F_p## is the force of weight?

Never mind, I think you are saying that ##F_p## is the resultant force acting on the gate. How did you figure out where the ##x## coordinate of ##A'## is?

Also, and maybe this is the problem but there has to be a vertical reaction force acting on the gate? If ##F_p## is the resultant, from what I'm seeing you have shown no vertical reaction force that could possibly balance the vertical component of ##F_p##?
see https://upload.cc/i1/2022/12/21/QHOYL5.jpg
 
Yeah, I get that.

Where is the vertical reaction force at ##A## that is necessary to balance the vertical component of ##F_p##? You have to satisfy two relationships.

##\sum F = 0 ##

##\sum M = 0 ##
 
  • Like
Likes tracker890 Source h
erobz said:
Yeah, I get that.

Where is the vertical reaction force at ##A## that is necessary to balance the vertical component of ##F_p##? You have to satisfy two relationships.

##\sum F = 0 ##

##\sum M = 0 ##
Thank you!
I think the free body diagram should be changed as follows:
1671632623632.png

Therefore, it is more convenient to take the moment at point A.
 
1671640909553.png
 
Last edited:
  • Like
Likes Steve4Physics and tracker890 Source h
  • #10
Just to add to what @erobz has said…

The reaction force of the hinge on the door (a point A) has an unknown magnitude and direction. This reaction force produces a moment about point A'. This moment hasn’t been included in (Post #1) Method 2

(When taking moments about point A, as in (Post #1) Method 1, the reaction can be ignored as it passes through point A.)
 
  • Like
Likes tracker890 Source h and erobz
  • #11
tracker890 Source h said:
Therefore, it is more convenient to take the moment at point A.
I would say both points are equally convenient.
You know that the reaction forces at hinge A are:
Fax=F+Fpx
Fay=Fpy

Note that yp will be the location of the centroid of a triangle formed by the horizontal pressure distribution, while xp will be the location of the centroid of a quarter of circle formed by the vertical pressure distribution.
 
  • Like
Likes tracker890 Source h and erobz
  • #12
Seems to me the easiest way is to forget about centroids and centres of pressure and work from first principles.
At ##\theta## below the horizontal, the force on an element ##R\cdot d\theta## is ##R\rho g\sin(\theta)R\cdot d\theta##. Its torque about A is ##R^2\rho g\sin(\theta)R\cos(\theta)\cdot d\theta = \frac 12R^3\rho g\sin(2\theta)\cdot d\theta##. Integrate.
 
  • #13
haruspex said:
Seems to me the easiest way is to forget about centroids and centres of pressure and work from first principles.
At ##\theta## below the horizontal, the force on an element ##R\cdot d\theta## is ##R\rho g\sin(\theta)R\cdot d\theta##. Its torque about A is ##R^2\rho g\sin(\theta)R\cos(\theta)\cdot d\theta = \frac 12R^3\rho g\sin(2\theta)\cdot d\theta##. Integrate.
My fluid mechanics text (for Engineers) completely detours it in favor of the formulaic (calculus already done for you) approach. They expect less mathematical finesse of engineers!
 
  • #14
haruspex said:
Seems to me the easiest way is to forget about centroids and centres of pressure and work from first principles.
At ##\theta## below the horizontal, the force on an element ##R\cdot d\theta## is ##R\rho g\sin(\theta)R\cdot d\theta##. Its torque about A is ##R^2\rho g\sin(\theta)R\cos(\theta)\cdot d\theta = \frac 12R^3\rho g\sin(2\theta)\cdot d\theta##. Integrate.
Don't we need to multiply by the width of the gate (into the page)?
 
  • #15
erobz said:
Don't we need to multiply by the width of the gate (into the page)?
I took ##\rho## as an area density,
 
Back
Top