MHB Why is the e in the derivative for related rates?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Related rates
Click For Summary
The discussion centers on calculating the amount of water in a tank after 20 minutes of pumping, using the rate function r(t) = 30(1-e^{-0.16t}). The integral of this rate function from 0 to 20 minutes is used to determine the total volume of water added to the initial 800 gallons. The calculation yields approximately 1220 gallons in the tank after 20 minutes. The presence of 'e' in the derivative relates to the exponential decay factor in the rate function. The final answer indicates that the tank contains 1220 gallons of water after the specified time.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Water is pumped into a tank at a rate of $r(t) = 30(1-e^{e-0.16t})$ gallons per minute,
where t is the number of minutes since the pump was turned on.
If the tank contained 800 gallons of water when the pump was turned on,
how much water, to the nearest gallon, is in the tank after 20 minutes?
\begin{array}{ll}
a. &380 \textit{ gal}\\
b. &420\textit{ gal}\\
c. &829\textit{ gal}\\
d. &1220\textit{ gal}\\
e. &1376\textit{ gal}
\end{array}
so starting take the integral
why is e in the d/dt
$$\displaystyle800-\int_0^{20} 30(1- e^{-0.16t})\ dt $$
 
Last edited:
Physics news on Phys.org
water is pumped into the tank at a rate of $r(t) = 30(1-e^{-0.16t})$

$\displaystyle 800 + \int_0^{20} r(t) \, dt \approx 1220 \, gal$

fyi, this is a calculator active question
 
Last edited by a moderator:
ok
into not out of
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
15K
  • · Replies 2 ·
Replies
2
Views
3K