Why Is the Paraboloidal Wavefront Approximation Valid?

  • Thread starter Thread starter yucheng
  • Start date Start date
  • Tags Tags
    Wave Wave optics
Click For Summary
The discussion focuses on the validity of the paraboloidal wavefront approximation in the context of varying amplitude and phase. It highlights that for large distances from the source, spherical wavefronts can be approximated as paraboloidal shapes, especially when considering points close to a specific location along the z-axis. The phase condition for points near a given point leads to a mathematical relationship that describes the wavefront's shape. The approximation remains valid under the assumption that the amplitude varies little over small distances. Overall, the conversation seeks to clarify the conditions under which the paraboloidal approximation holds true in wavefront analysis.
yucheng
Messages
232
Reaction score
57
Homework Statement
Try plotting....
Relevant Equations
$$U(\vec{r}) \approx \frac{A_0}{z} exp(-jkz) \exp(-jk\frac{x^2 + y^2}{2z})$$
We can either plot the real part of the complex amplitude, or the wavefront.

However, how is wavefront meaningful for varying amplitude? In order to plot the paraboloid, we must vary ##z##, which varies the amplitude ##\frac{A_0}{z}##. Unless the amplitude is varies little, i.e. ##1/z## approximately constant within ##\Delta z = \lambda##?

In the book Fundamentals of Photonics, Saleh & Teich, the author mentions that the phase of the second exponential function serves to bend the planar wavefronts into paraboloidal surfaces i.e. ##frac{x^2 + y^2}{2z} = \text{const}##, however, shouldn't it be ##z + frac{x^2 + y^2}{2z} = \text{const}## when plotting surfaces of constant phase i.e. wavefronts?

The result should look like this.

Thanks in advance!
 
Physics news on Phys.org
From the link, they are considering spherical waves where $$U(\vec r) = \frac{A_0}{r}e^{-jkr}.$$ The phase is ##kr##. The true wavefronts are all spherical. For large distances from ##r = 0##, small patches of the wavefronts can be approximated by paraboloid-shaped wavefronts. (For very large distances, the wavefronts can be approximated by plane wavefronts.)

Consider moving out along the ##z## axis to some point ##P## with coordinates ##(x, y, z) = (0, 0, z_0)##. The phase of the wave at that point will be ##kz_0##. We look for points in the vicinity of ##P## for which the wave has the same phase. We assume ##z_0## is large enough so that points in the vicinity of ##P## will have coordinates ##(x, y, z)## satisfying ##x \ll z## and ##y \ll z##. For these points, $$r = \sqrt{x^2 + y^2 + z^2} \approx z + \frac{x^2+y^2}{2z} .$$ The condition that the phase ##kr## at these points be the same as at ##P## is $$k\left[ z + \frac{x^2+y^2}{2z}\right ] = k z_0$$ From this show that points near ##P## on the wavefront passing through ##P## have coordinates ##(x, y, z)## which satisfy $$z-z_0 \approx -\frac{x^2+y^2}{2z_0} .$$ Describe the shape of the locus of points ##(x, y, z)## satisfying $$z-z_0 = -\frac{x^2+y^2}{2z_0} .$$
 
TSny said:
$$z-z_0 \approx -\frac{x^2+y^2}{2z_0}$$
I guess this is the key. But why would it be a valid approximation though? Let me try a quantitative argument...
 
So is there some elegant way to do this or am I just supposed to follow my nose and sub the Taylor expansions for terms in the two boost matrices under the assumption ##v,w\ll 1##, then do three ugly matrix multiplications and get some horrifying kludge for ##R## and show that the product of ##R## and its transpose is the identity matrix with det(R)=1? Without loss of generality I made ##\mathbf{v}## point along the x-axis and since ##\mathbf{v}\cdot\mathbf{w} = 0## I set ##w_1 = 0## to...

Similar threads

Replies
12
Views
653
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
1
Views
3K