MHB Why Is the Sum of Certain Binomial Coefficients Divisible by \( p^2 \)?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
The discussion centers on proving that the sum of specific binomial coefficients, from \( \binom{p}{1} \) to \( \binom{p}{k} \) where \( k = \lfloor 2p/3 \rfloor \), is divisible by \( p^2 \) for any prime \( p > 3 \). This problem was featured as Problem A-5 in the 1996 William Lowell Putnam Mathematical Competition. Despite the challenge, no participants provided a solution to the Problem of the Week (POTW). The solution, attributed to Lenny Ng, is provided following the discussion. The mathematical significance of this result highlights interesting properties of binomial coefficients in number theory.
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

If $p$ is a prime number greater than 3 and $k = \lfloor 2p/3
\rfloor$, prove that the sum
\[
\binom p1 + \binom p2 + \cdots + \binom pk
\]
of binomial coefficients is divisible by $p^2$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 224 - Jul 13, 2016

This was Problem A-5 in the 1996 William Lowell Putnam Mathematical Competition.

No one solved this week's POTW. The solution (due to Lenny Ng) follows :

$\def\mymod#1{\,\,({\rm mod}\, #1)}$
For $1 \leq n \leq p-1$, $p$ divides $\binom pn$ and
\begin{align*}
\frac{1}{p} \binom pn &= \frac{1}{n} \frac{p-1}{1} \frac{p-2}{2} \cdots
\frac{p-n+1}{n-1} \\
&\equiv \frac{(-1)^{n-1}}{n} \mymod{p},
\end{align*}
where the congruence $x \equiv y \mymod{p}$ means that $x-y$ is a
rational number whose numerator, in reduced form, is divisible by $p$.
Hence it suffices to show that
\[
\sum_{n=1}^k \frac{(-1)^{n-1}}{n} \equiv 0 \mymod{p}.
\]
We distinguish two cases based on $p \mymod{6}$. First suppose $p =
6r+1$, so that $k = 4r$. Then
\begin{align*}
\sum_{n=1}^{4r} \frac{(-1)^{n-1}}{n}
&= \sum_{n=1}^{4r} \frac{1}{n} - 2 \sum_{n=1}^{2r} \frac{1}{2n} \\
&= \sum_{n=1}^{2r} \left( \frac{1}{n} - \frac{1}{n} \right)
+ \sum_{n=2r+1}^{3r} \left( \frac{1}{n} + \frac{1}{6r+1-n} \right) \\
&= \sum_{n=2r+1}^{3r} \frac{p}{n(p-n)} \equiv 0 \mymod{p},
\end{align*}
since $p = 6r+1$.

Now suppose $p = 6r+5$, so that $k = 4r + 3$. A similar argument gives
\begin{align*}
\sum_{n=1}^{4r+3}\ \frac{(-1)^{n-1}}{n}
&= \sum_{n=1}^{4r+3} \frac{1}{n} + 2 \sum_{n=1}^{2r+1} \frac{1}{2n} \\
&= \sum_{n=1}^{2r+1} \left( \frac{1}{n} - \frac{1}{n} \right)
+ \sum_{n=2r+2}^{3r+2} \left( \frac{1}{n} + \frac{1}{6r+5-n} \right) \\
&= \sum_{n=2r+2}^{3r+2} \frac{p}{n(p-n)} \equiv 0 \mymod{p}.
\end{align*}