Why is this equation from Purcell's EM textbook correct?

  • Thread starter Thread starter Leo Liu
  • Start date Start date
  • Tags Tags
    Em Textbook
AI Thread Summary
The equation from Purcell's EM textbook, which relates force on a unit area to the electric field, is debated regarding its correctness. One participant argues that the coefficient should be the inverse of what is presented, suggesting it should be ##\frac{\epsilon_0}{2}## for dimensional consistency. Others clarify that the formula has been corrected in later editions of the textbook, indicating that earlier versions may contain errors. The discussion highlights the importance of verifying equations against the most current edition of the textbook. Overall, the conversation emphasizes the need for careful examination of mathematical expressions in physics.
Leo Liu
Messages
353
Reaction score
156
Homework Statement
.
Relevant Equations
.
I saw the following equation on page 31 in Purcell's EM textbook.
$$F=\epsilon_0\int_{E_1}^{E_2} E\, dE=\frac 2 {\epsilon_0} (E_2^2-E_1^2)$$
Here, F is the force on a unit area.
And then he claims that since ##E_2-E_1=\sigma/\epsilon_0##, the equation can be further simplified to
$$F=\frac 1 {\epsilon_0}(E_1+E_2)\sigma$$

However, I think the correct coefficient in the last part of first equation should be the inverse of what it is now (##\frac{\epsilon_0}{2}## instead), as only then can I obtain the second expression. I have no idea why the author wrote the equation this way. To give it a little bit of background, dE is the change in the electric field of a thin layer of a charged sphere, E1 is the the electric field inside, and E2 is the electric field outside. Could someone explain?
 
Last edited:
Physics news on Phys.org
yes, at least viewing from a purely mathematical view (integrating ##\int x dx=\frac{x^2}{2}## that should have been ##\frac{\epsilon_0}{2}##. Also from a dimensional analysis point of view ##\epsilon_0## just cannot be on the denominator, the units won't match then.
 
  • Like
Likes Leo Liu and Steve4Physics
Leo Liu said:
Homework Statement:: .
Relevant Equations:: .

I saw the following equation on page 31 in Purcell's EM textbook.
$$F=\epsilon_0\int_{E_1}^{E_2} E\, dE=\frac 2 {\epsilon_0} (E_2^2-E_1^2)$$
The formula (1.48 in the book) is in fact
##\frac F A = … = \frac {\epsilon_0}{2}(E_2^2 – E_1^2)##
Check your book!
 
Steve4Physics said:
The formula (1.48 in the book) is in fact
##\frac F A = … = \frac {\epsilon_0}{2}(E_2^2 – E_1^2)##
Check your book!
1628347234618.png

Here is a picture of my book. This book is probably an older edition which is authorized to be printed in China by the original publisher.
 
Leo Liu said:
;View attachment 287228
Here is a picture of my book. This book is probably an older edition which is authorized to be printed in China by the original publisher.
I guess this is an error in earlier editions which has now been corrected. The 3rd edition (bottom of page 31) shows this:
force per unit area.jpg
 
  • Like
Likes Delta2 and Leo Liu
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top