MHB Why is \( y(x) = 1 - x \) chosen and how does it fit into the chain rule?

  • Thread starter Thread starter aruwin
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
The discussion centers on understanding the choice of the function \( y(x) = 1 - x \) in the context of proving an equality for the function \( f(x) = \frac{\log x}{x} \). Participants clarify that this substitution simplifies the analysis of the Taylor series expansion around \( x = 1 \). The chain rule is also explained, emphasizing that the derivative of \( f \) with respect to \( x \) can be expressed in terms of \( g \) and its derivative with respect to \( y \). The conversation highlights that the notation \( f^{(n)} \) refers to the nth derivative, which aligns with the established differentiation rules. Overall, the choice of \( y(x) \) and the application of the chain rule are justified as effective strategies for the proof.
aruwin
Messages
204
Reaction score
0
I have the solution to the question, but I don't understand the first step so I am just going to paste the first step here.I need people to explain to me.

Question:
For the function f(x) = (logx)/x, prove the following equality.

fn (1) = (-1)(n-1) n![1+ 1/2 +1/3 +...+1/n]

First step of the solution(The bolded ones are what I don't understand):
Let y(x) = 1 - x and g(x) = f(y(x)) = log(1 - x) / (1 - x). Then:

g(y(x)) = log(1 - (1 - x)) / (1 - (1 - x)) = log(x) / x = f(x)

Thus:

f'(x) = g'(y(x)) * y'(x) ... (chain rule)
= g'(y(x)) * -1
= -g'(y(x))

f''(x) = -g''(y(x)) * y'(x)
= -g''(y(x)) * -1
= g''(y(x))

So on, by induction, we can see that:

f^(n)(x) = (-1)^n * g^(n)(y(x))
===> f^(n)(1) = (-1)^n * g^(n)(y(1)) = (-1)^n * g^(n)(0)

Ok, first off, why and how do we know to put y(x) = 1 - x?
Secondly, the chain rule part. Where does he get y(x) in that chain rule?
I thought f'(x)=g'(y(x))
 
Physics news on Phys.org
When you write f^n do you mean the nth derivative? That is more commonly represented with (): f^{(n)}. Just f^n usually means the nth iteration of f but that can't be what you mean here: f(1)= 0 so f^2(1) is not defined.

I'm not sure what there is about "y= 1- x" not to understand! They are defining a new variable in terms of the old If y= 1- x, then x= 1- y so that f(x)= ln(x)/x= ln(1- y)/(1- y)= g(y). f and g are really the same function- the only difference is that we are thinking of g as a function of y, f as a function of x. They are defining g(y) to be ln(1- y)/(1- y)= f(y). The derivative of g with respect to x is, by the chain rule, \frac{dg}{dy}= \frac{df}{dy}\frac{dy}{dx}. Of course, with y= 1- x, dy/dx= -1 so we have dg/dy= -df/dy, or g&#039;= -f&#039;, as they say. Differentiating <b>again</b>, the same thing happens so that we multiply by -1 again: g&#039;&#039;= (-1)(-1)f&#039;&#039;= f&#039;&#039;. It should be easy to see that as we continue differentiating, we just keep multiplying by -1 so the nth derivative of g is (-1)^n times the nth derivative of f.<br /> <br /> <blockquote data-attributes="" data-quote="" data-source="" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> Secondly, the chain rule part. Where does he get y(x) in that chain rule?<br /> I thought f&#039;(x)=g&#039;(y(x)) </div> </div> </blockquote> No, that is precisely what the chain rule says: with the derivative of f with respect to x and the the derivative of g with respect to y, we must have f&#039;(x)= g&#039;(y) (dy/dx).
 
aruwin said:
I have the solution to the question, but I don't understand the first step so I am just going to paste the first step here.I need people to explain to me.

Question:
For the function f(x) = (logx)/x, prove the following equality.

fn (1) = (-1)(n-1) n![1+ 1/2 +1/3 +...+1/n]

First step of the solution(The bolded ones are what I don't understand):
Let y(x) = 1 - x and g(x) = f(y(x)) = log(1 - x) / (1 - x). Then:

g(y(x)) = log(1 - (1 - x)) / (1 - (1 - x)) = log(x) / x = f(x)

Thus:

f'(x) = g'(y(x)) * y'(x) ... (chain rule)
= g'(y(x)) * -1
= -g'(y(x))

f''(x) = -g''(y(x)) * y'(x)
= -g''(y(x)) * -1
= g''(y(x))

So on, by induction, we can see that:

f^(n)(x) = (-1)^n * g^(n)(y(x))
===> f^(n)(1) = (-1)^n * g^(n)(y(1)) = (-1)^n * g^(n)(0)

Ok, first off, why and how do we know to put y(x) = 1 - x?

Well I would suggest that \(y=1-x\) is an interesting change of variable to consider since we are obviously looking at the coefficients in the Taylor series expansion of \(f(x)\) about \(x=1\).

Trial and error would then have been used to find the given relation and that would then be transformed into a proof with no given reason for the choice other than it works.

What you are seeing is a streamlined proof with the scaffolding used to construct it removed.

Secondly, the chain rule part. Where does he get y(x) in that chain rule?
I thought f'(x)=g'(y(x))

No, the prime denotes differentiation with respect to \(x\), so the chain rule is:

\[\frac{d}{dx}g(y)=\frac{d}{dy}g(y)\frac{dy}{dx}\]

CB
 
Last edited:
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
Replies
9
Views
3K
  • · Replies 8 ·
Replies
8
Views
606
  • · Replies 11 ·
Replies
11
Views
2K
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K