Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Why isn't the Cotton tensor identical zero?

  1. Jan 29, 2010 #1
    Cotton tensor [tex]C_{\mu\varkappa\lambda}[/tex] is define as:
    where [tex]W^{\sigma}_{\phantom{M}\mu\varkappa\lambda}[/tex] is Weyl tensor and [tex] n [/tex] is dimension of space.

    Weyl tensor obey II. Bianchi identity (and all symetries of Rieamann tensor):
    [tex]\nabla_{\nu}W^{\sigma}_{\phantom{M}\mu\varkappa\lambda} + \nabla_{\varkappa}W^{\sigma}_{\phantom{M}\mu\lambda\nu}+\nabla_{\lambda}W^{\sigma}_{\phantom{M}\mu\nu\varkappa}=0[/tex]​
    and extra it is traceless:
    For a divergence of Weyl tensor can write:
    [tex]\nabla_{\sigma}W^{\sigma}_{\phantom{M}\mu\varkappa\lambda}=g^{\rho\sigma}\nabla_{\sigma}W_{\rho\mu\varkappa\lambda}=\left<\mbox{II. Bianchi identity}\right>=-g^{\rho\sigma}\left(\nabla_{\varkappa}W_{\rho\mu\lambda\sigma}+\nabla_{\lambda}W_{\rho\mu\sigma\varkappa}\right)=[/tex]
    Becose Weyl tensor is traceless therefor Cotton tensor must be identical zero!
    Is this correct?
  2. jcsd
  3. Jan 29, 2010 #2
    Let's do clean the equations a little bit and see what's wrong:

    From the second Bianchi Identity we have

    [tex]\nabla_{\nu}W^{\sigma}_{\mu \varkappa \lambda}+\nabla_{\varkappa }W^{\sigma}_{\mu \lambda \nu}+\nabla_{\lambda }W^{\sigma}_{\mu \nu\varkappa}=0[/tex]

    Contracting [tex]\nu[/tex] with [tex]\sigma[/tex] gives

    [tex]\nabla_{\sigma}W^{\sigma}_{\mu \varkappa \lambda}+\nabla_{\varkappa }W^{\sigma}_{\mu \lambda \sigma}+\nabla_{\lambda }W^{\sigma}_{\mu \sigma\varkappa}=0\Rightarrow[/tex]

    [tex]\nabla_{\sigma}W^{\sigma}_{\mu \varkappa \lambda}+\nabla_{\varkappa }W^{\sigma}_{\mu \lambda \sigma}-\nabla_{\lambda }W^{\sigma}_{\mu \varkappa\sigma}=0\Rightarrow[/tex]

    [tex]\nabla_{\sigma}W^{\sigma}_{\mu \varkappa \lambda}+g^{\rho \sigma}\nabla_{\varkappa }W_{\rho \mu \lambda \sigma}-g^{\rho \sigma}\nabla_{\lambda }W_{\rho \mu \varkappa\sigma}=0.[/tex] (1)

    Now I think by the property of tracelessness of Weyl tensor, or,

    [tex]g^{\rho \sigma}W_{\rho \mu \varkappa\sigma}=0,[/tex]

    you conclude from (1)

    [tex]\nabla_{\sigma}W^{\sigma}_{\mu \varkappa \lambda}=0.[/tex]

    So you put this into the equation

    [tex]\nabla_{\sigma}W^{\sigma}_{\phantom{M}\mu\varkappa \lambda}=\frac{n-3}{n-2}C_{\mu\varkappa\lambda}[/tex]

    and finally claim that the Cotton tensor vanishes. But unfortunately you did make a big mistake. I let you think about where this flaw arises in the above calculations! You can have a look at the fact that in a geodesic coordinates, for example, the second derivatives of metric tensors wrt coordinates do not vanish whereas their first derevatives do.

  4. Jan 29, 2010 #3
    If do you think case when [tex]n=3[/tex]. Yes, I did a big mistake. But I suppose [tex]n\geq4[/tex].
    Or Cotton tensor exist only for [tex]n=3[/tex] space (for [tex]n=2[/tex] it is also zero)?
  5. Jan 29, 2010 #4
    For n=3, the Cotton tensor does not vanish in general. But for [tex]n\geq4[/tex], if the weyl tensor vanishes, then the Cotton tensor always vanishes. For n less than 3 the Cotton tensor is not defined.

  6. May 19, 2010 #5
    This is correct, because I made another big mistake. Weyl tensor isn't governed of analog II. Bianchi identity. Therefore cotton tensor is non-zero generaly for [tex]n>2[/tex].
    Last edited: May 19, 2010
  7. May 20, 2010 #6
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook