Why isn't the Lagrangian invariant under ##\theta## rotations?

Click For Summary

Discussion Overview

The discussion centers on the invariance of the Lagrangian for a particle in a radially symmetric potential under rotations in spherical coordinates, specifically focusing on the angle ##\theta##. Participants explore the implications of this invariance, the conservation of angular momentum, and the differences between rotations in the ##\theta## and ##\varphi## directions.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant presents the Lagrangian for a particle in a radial potential and notes that it is not invariant under shifts in ##\theta##, while it is invariant under shifts in ##\varphi##.
  • Another participant explains that a movement in the ##\theta## direction is not a rigid rotation and contrasts it with the ##\varphi## direction, which maintains equal radius.
  • There is a discussion about the conservation of angular momentum, with one participant asserting that only the component associated with ##\varphi## is conserved, while the component associated with ##\theta## is not generally conserved due to its dependence on a non-fixed axis.
  • One participant questions whether only the quantity ##L_\theta \sin(\theta)## is conserved in the system.
  • A later reply emphasizes that the introduction of spherical coordinates breaks full rotational symmetry, leading to the conclusion that the Lagrangian is not invariant under ##\theta## rotations.

Areas of Agreement / Disagreement

Participants generally agree that the Lagrangian is not invariant under ##\theta## rotations and that this has implications for the conservation of angular momentum. However, there are differing views on the nature of these rotations and their effects on the system's symmetries.

Contextual Notes

The discussion highlights the limitations of spherical coordinates in expressing full rotational symmetry, as they introduce a preferred direction along the polar axis, which affects the invariance of the Lagrangian.

PhysicsRock
Messages
121
Reaction score
19
TL;DR
Lagrangian of a particle in radial potential isn't invariant under ##\theta## rotations.
I just calculated the Lagrangian of a particle of mass ##m## in a radially symmetric potential ##V(r)##. I thought it would be a good idea to switch to spherical coordinates for that matter. What I get is

$$
L = \frac{1}{2} m \left( \dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \dot{\varphi}^2 \sin^2(\theta) \right) - V(r)
$$

This is typically a well-known result and I am very confident that it's correct. We instantly see that this Lagrangian does not depend on ##\varphi##, only on it's time derivative. Thus, we can introduce an infinitesimal rotational shift ##\delta\varphi##, which will not change the Lagrangian. However, a shift ##\delta\theta## does not leave this expression invariant, since ##\theta## explicitly appears in the Lagrangian. With radial symmetry though, I would expect that both angles can be altered infinitesimally without changing the physics of the system. Since ##\theta## appears in the sine squared term, we could introduce a discrete shift ##\delta\theta = n \pi## with ##n \in \mathbb{N}##. This, however, would not yield a conservation law, since Noether's theorem demands continuous symmetries. I would've expected that angular momentum is conserved here, but using said theorem, the only conserved quantity here would be

$$
\frac{d}{dt} \left( m r^2 \dot{\varphi} \sin^2(\theta) \right) = 0
$$

which looks like a component of angular momentum (EDIT: it is in fact the ##L_\theta## component), but not angular momentum completely.

Why is that?
 
Last edited:
Physics news on Phys.org
A movement in the ##\theta## direction isn't a rigid rotation. It maps lines of constant latitude onto each other, and they don't have equal radius. Contrast a rotation in the ##\phi## direction that maps lines of constant longitude onto each other - they are all great circles.

There are Killing fields corresponding to rotations around the ##x## and ##y## axes (assuming rotation around ##z## is the ##\delta\phi## in your post), but they are not so cleanly expressed on spherical polars (slightly surprisingly, I agree).
 
  • Like
Likes   Reactions: strangerep, Dale and malawi_glenn
Ibix said:
A movement in the ##\theta## direction isn't a rigid rotation. It maps lines of constant latitude onto each other, and they don't have equal radius. Contrast a rotation in the ##\phi## direction that maps lines of constant longitude onto each other - they are all great circles.

There are Killing fields corresponding to rotations around the ##x## and ##y## axes (assuming rotation around ##z## is the ##\delta\phi## in your post), but they are not so cleanly expressed on spherical polars (slightly surprisingly, I agree).

So it is correct that only ##L_\theta \sin(\theta)## is conserved in such a system?
 
PhysicsRock said:
So it is correct that only ##L_\theta \sin(\theta)## is conserved in such a system?
A particle moving in a central potential will have an angular momentum (about the origin), ##\vec L##, that is conserved. The direction of ##\vec L## is perpendicular to the plane of motion of the particle.

Since ##\vec L## remains constant, the projection of ##\vec L## along any fixed axis in the inertial frame will be conserved. The quantity ##mr^2\sin^2\theta \, \dot{\varphi}## is the canonical momentum associated with the variable ##\varphi## and this quantity is the projection of ##\vec L## along the fixed z-axis. So this quantity is conserved.

The quantity ##mr^2 \dot{\theta}## is the canonical momentum associated with the variable ##\theta##. At some instant of time, this quantity is the projection of ##\vec L## along an axis that lies in the x-y plane and makes an angle ##\varphi## to the y-axis. But this axis is not a fixed axis (in general) since ##\varphi## will vary with time (in general). Thus, ##mr^2 \dot{\theta}## is generally not conserved.

I don't know if this helps.
 
  • Like
Likes   Reactions: Ibix and malawi_glenn
TSny said:
A particle moving in a central potential will have an angular momentum (about the origin), ##\vec L##, that is conserved. The direction of ##\vec L## is perpendicular to the plane of motion of the particle.

Since ##\vec L## remains constant, the projection of ##\vec L## along any fixed axis in the inertial frame will be conserved. The quantity ##mr^2\sin^2\theta \, \dot{\varphi}## is the canonical momentum associated with the variable ##\varphi## and this quantity is the projection of ##\vec L## along the fixed z-axis. So this quantity is conserved.

The quantity ##mr^2 \dot{\theta}## is the canonical momentum associated with the variable ##\theta##. At some instant of time, this quantity is the projection of ##\vec L## along an axis that lies in the x-y plane and makes an angle ##\varphi## to the y-axis. But this axis is not a fixed axis (in general) since ##\varphi## will vary with time (in general). Thus, ##mr^2 \dot{\theta}## is generally not conserved.

I don't know if this helps.
It does help a lot. Thank you.
 
PhysicsRock said:
TL;DR Summary: Lagrangian of a particle in radial potential isn't invariant under ##\theta## rotations.

I just calculated the Lagrangian of a particle of mass ##m## in a radially symmetric potential ##V(r)##. I thought it would be a good idea to switch to spherical coordinates for that matter. What I get is

$$
L = \frac{1}{2} m \left( \dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \dot{\varphi}^2 \sin^2(\theta) \right) - V(r)
$$

This is typically a well-known result and I am very confident that it's correct. We instantly see that this Lagrangian does not depend on ##\varphi##, only on it's time derivative. Thus, we can introduce an infinitesimal rotational shift ##\delta\varphi##, which will not change the Lagrangian. However, a shift ##\delta\theta## does not leave this expression invariant, since ##\theta## explicitly appears in the Lagrangian. With radial symmetry though, I would expect that both angles can be altered infinitesimally without changing the physics of the system. Since ##\theta## appears in the sine squared term, we could introduce a discrete shift ##\delta\theta = n \pi## with ##n \in \mathbb{N}##. This, however, would not yield a conservation law, since Noether's theorem demands continuous symmetries. I would've expected that angular momentum is conserved here, but using said theorem, the only conserved quantity here would be

$$
\frac{d}{dt} \left( m r^2 \dot{\varphi} \sin^2(\theta) \right) = 0
$$

which looks like a component of angular momentum (EDIT: it is in fact the ##L_\theta## component), but not angular momentum completely.

Why is that?
From a symmetry point of view, it's because with spherical coordinates you introduce a perferred direction, i.e., the direction of the polar axis, along which the spherical coordinates are singular.

Rotational invariance is better expressed in terms of Cartesian coordinates. An infinitesimal rotation is defined by
$$\delta t=0, \quad \delta \vec{r} = \delta \vec{\varphi} \times \vec{r}.$$
Full rotation symmetry means you can take ##\delta \vec{\varphi}## in an arbitrary direction, and the Lagrangian invariant under this infinitesimal rotation.

By introducing spherical coordinates you distinguish one direction by introducing the polar axis, and the full rotation symmetry is thus broken to the symmetry under rotations only around the polar axis, and this residual symmetry is parametrized by ##\varphi##, which is thus a cyclic variable for a particle in a central potential.
 
  • Like
  • Love
Likes   Reactions: PhysicsRock, Ibix and malawi_glenn

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K