Why isn't the Lagrangian invariant under ##\theta## rotations?

Click For Summary
SUMMARY

The Lagrangian of a particle with mass m in a radially symmetric potential V(r) is given by L = (1/2) m (dot{r}^2 + r^2 dot{theta}^2 + r^2 dot{varphi}^2 sin^2(theta)) - V(r). This expression demonstrates that the Lagrangian is invariant under infinitesimal shifts in varphi but not in theta, as theta explicitly appears in the Lagrangian. Consequently, only the component L_theta sin(theta) is conserved, while mr^2 dot{theta} is generally not conserved due to the lack of a fixed axis in the theta direction. This indicates a broken symmetry in spherical coordinates compared to Cartesian coordinates.

PREREQUISITES
  • Understanding of Lagrangian mechanics
  • Familiarity with spherical coordinates
  • Knowledge of Noether's theorem
  • Basic concepts of angular momentum in physics
NEXT STEPS
  • Study the implications of Noether's theorem on conservation laws in physics
  • Learn about the role of cyclic coordinates in Lagrangian mechanics
  • Explore the differences between spherical and Cartesian coordinate systems in mechanics
  • Investigate Killing fields and their significance in the context of symmetries
USEFUL FOR

This discussion is beneficial for physics students, researchers in classical mechanics, and anyone interested in the mathematical foundations of Lagrangian dynamics and symmetry principles.

PhysicsRock
Messages
121
Reaction score
19
TL;DR
Lagrangian of a particle in radial potential isn't invariant under ##\theta## rotations.
I just calculated the Lagrangian of a particle of mass ##m## in a radially symmetric potential ##V(r)##. I thought it would be a good idea to switch to spherical coordinates for that matter. What I get is

$$
L = \frac{1}{2} m \left( \dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \dot{\varphi}^2 \sin^2(\theta) \right) - V(r)
$$

This is typically a well-known result and I am very confident that it's correct. We instantly see that this Lagrangian does not depend on ##\varphi##, only on it's time derivative. Thus, we can introduce an infinitesimal rotational shift ##\delta\varphi##, which will not change the Lagrangian. However, a shift ##\delta\theta## does not leave this expression invariant, since ##\theta## explicitly appears in the Lagrangian. With radial symmetry though, I would expect that both angles can be altered infinitesimally without changing the physics of the system. Since ##\theta## appears in the sine squared term, we could introduce a discrete shift ##\delta\theta = n \pi## with ##n \in \mathbb{N}##. This, however, would not yield a conservation law, since Noether's theorem demands continuous symmetries. I would've expected that angular momentum is conserved here, but using said theorem, the only conserved quantity here would be

$$
\frac{d}{dt} \left( m r^2 \dot{\varphi} \sin^2(\theta) \right) = 0
$$

which looks like a component of angular momentum (EDIT: it is in fact the ##L_\theta## component), but not angular momentum completely.

Why is that?
 
Last edited:
Physics news on Phys.org
A movement in the ##\theta## direction isn't a rigid rotation. It maps lines of constant latitude onto each other, and they don't have equal radius. Contrast a rotation in the ##\phi## direction that maps lines of constant longitude onto each other - they are all great circles.

There are Killing fields corresponding to rotations around the ##x## and ##y## axes (assuming rotation around ##z## is the ##\delta\phi## in your post), but they are not so cleanly expressed on spherical polars (slightly surprisingly, I agree).
 
  • Like
Likes   Reactions: strangerep, Dale and malawi_glenn
Ibix said:
A movement in the ##\theta## direction isn't a rigid rotation. It maps lines of constant latitude onto each other, and they don't have equal radius. Contrast a rotation in the ##\phi## direction that maps lines of constant longitude onto each other - they are all great circles.

There are Killing fields corresponding to rotations around the ##x## and ##y## axes (assuming rotation around ##z## is the ##\delta\phi## in your post), but they are not so cleanly expressed on spherical polars (slightly surprisingly, I agree).

So it is correct that only ##L_\theta \sin(\theta)## is conserved in such a system?
 
PhysicsRock said:
So it is correct that only ##L_\theta \sin(\theta)## is conserved in such a system?
A particle moving in a central potential will have an angular momentum (about the origin), ##\vec L##, that is conserved. The direction of ##\vec L## is perpendicular to the plane of motion of the particle.

Since ##\vec L## remains constant, the projection of ##\vec L## along any fixed axis in the inertial frame will be conserved. The quantity ##mr^2\sin^2\theta \, \dot{\varphi}## is the canonical momentum associated with the variable ##\varphi## and this quantity is the projection of ##\vec L## along the fixed z-axis. So this quantity is conserved.

The quantity ##mr^2 \dot{\theta}## is the canonical momentum associated with the variable ##\theta##. At some instant of time, this quantity is the projection of ##\vec L## along an axis that lies in the x-y plane and makes an angle ##\varphi## to the y-axis. But this axis is not a fixed axis (in general) since ##\varphi## will vary with time (in general). Thus, ##mr^2 \dot{\theta}## is generally not conserved.

I don't know if this helps.
 
  • Like
Likes   Reactions: Ibix and malawi_glenn
TSny said:
A particle moving in a central potential will have an angular momentum (about the origin), ##\vec L##, that is conserved. The direction of ##\vec L## is perpendicular to the plane of motion of the particle.

Since ##\vec L## remains constant, the projection of ##\vec L## along any fixed axis in the inertial frame will be conserved. The quantity ##mr^2\sin^2\theta \, \dot{\varphi}## is the canonical momentum associated with the variable ##\varphi## and this quantity is the projection of ##\vec L## along the fixed z-axis. So this quantity is conserved.

The quantity ##mr^2 \dot{\theta}## is the canonical momentum associated with the variable ##\theta##. At some instant of time, this quantity is the projection of ##\vec L## along an axis that lies in the x-y plane and makes an angle ##\varphi## to the y-axis. But this axis is not a fixed axis (in general) since ##\varphi## will vary with time (in general). Thus, ##mr^2 \dot{\theta}## is generally not conserved.

I don't know if this helps.
It does help a lot. Thank you.
 
PhysicsRock said:
TL;DR Summary: Lagrangian of a particle in radial potential isn't invariant under ##\theta## rotations.

I just calculated the Lagrangian of a particle of mass ##m## in a radially symmetric potential ##V(r)##. I thought it would be a good idea to switch to spherical coordinates for that matter. What I get is

$$
L = \frac{1}{2} m \left( \dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \dot{\varphi}^2 \sin^2(\theta) \right) - V(r)
$$

This is typically a well-known result and I am very confident that it's correct. We instantly see that this Lagrangian does not depend on ##\varphi##, only on it's time derivative. Thus, we can introduce an infinitesimal rotational shift ##\delta\varphi##, which will not change the Lagrangian. However, a shift ##\delta\theta## does not leave this expression invariant, since ##\theta## explicitly appears in the Lagrangian. With radial symmetry though, I would expect that both angles can be altered infinitesimally without changing the physics of the system. Since ##\theta## appears in the sine squared term, we could introduce a discrete shift ##\delta\theta = n \pi## with ##n \in \mathbb{N}##. This, however, would not yield a conservation law, since Noether's theorem demands continuous symmetries. I would've expected that angular momentum is conserved here, but using said theorem, the only conserved quantity here would be

$$
\frac{d}{dt} \left( m r^2 \dot{\varphi} \sin^2(\theta) \right) = 0
$$

which looks like a component of angular momentum (EDIT: it is in fact the ##L_\theta## component), but not angular momentum completely.

Why is that?
From a symmetry point of view, it's because with spherical coordinates you introduce a perferred direction, i.e., the direction of the polar axis, along which the spherical coordinates are singular.

Rotational invariance is better expressed in terms of Cartesian coordinates. An infinitesimal rotation is defined by
$$\delta t=0, \quad \delta \vec{r} = \delta \vec{\varphi} \times \vec{r}.$$
Full rotation symmetry means you can take ##\delta \vec{\varphi}## in an arbitrary direction, and the Lagrangian invariant under this infinitesimal rotation.

By introducing spherical coordinates you distinguish one direction by introducing the polar axis, and the full rotation symmetry is thus broken to the symmetry under rotations only around the polar axis, and this residual symmetry is parametrized by ##\varphi##, which is thus a cyclic variable for a particle in a central potential.
 
  • Like
  • Love
Likes   Reactions: PhysicsRock, Ibix and malawi_glenn

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 9 ·
Replies
9
Views
843
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K