A Why the triangle inequality is greater than the 2 max{f(x),g(x)}

  • A
  • Thread starter Thread starter cbarker1
  • Start date Start date
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
TL;DR Summary
I am working on proving the L^p of measureable space (X,S,u) is a vector space. I am lost on why the the triangle intequalty is greater than the 2 max{f(x),g(x)} for a fix x in X.
I am reading Sheldon's Axler Book on Measure theory. He is proving that ##L^p(\mu)## is a Vector space over ##\mathbb{R}.## He claims that if ##\|f+g\|_{p}^p\leq 2^p(\|f\|_{p}^p+\|g\|_{p}^{p})## and nonzero homogenity holds true, then ##L^p{\mu}## is true with the standard addition and scalar multiplication. He starts with the following assumption:

Suppose that ##f,g\in L^p(\mu)## are arbitrary. Then if ##x\in X## is an arbitrary fix element of ##X,## then
##\begin{align*} |f(x)+g(x)|^p&\leq_{\text{triangle inequality}} (|f(x)|+|g(x)|)^p\\ &\leq_{\text{why?}} (2\max{|f(x)|,|g(x)|})^p\\ &\leq2^p(|f(x)|^p+|g(x)|^p)\end{align*}##

If you can explain whys in this proof then I will be able to understand the proof.

Thanks,

Carter Barker
 
Last edited:
Mathematics news on Phys.org
Because if, e.g., |f|>=|g|, then |f|+|g|<=|f|+|f|=2|f|
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
6
Views
3K
3
Replies
114
Views
10K
2
Replies
61
Views
11K
Replies
4
Views
2K
Back
Top