Why used $\cos\theta$ for $\text{y}$ axis or, gravitational force?

Click For Summary
The discussion centers on the use of $\cos\theta$ in the context of gravitational force acting on mass M1 on an inclined plane. Participants clarify that while $\cos\theta$ is typically associated with the x-axis, it is also applicable when decomposing gravitational force into components along the slope. The gravitational force acting on M1 can be resolved into components, with $M_1g\cos\theta$ representing the normal force perpendicular to the incline. This demonstrates that vector components can be utilized for forces acting at angles, regardless of their original orientation. Understanding these vector components is crucial for accurately analyzing motion on an incline.
Istiak
Messages
158
Reaction score
12
Homework Statement
Mass M1 is held on a plane with inclination
angle θ, and mass M2 hangs over the side. The two masses are connected by a
massless string which runs over a massless pulley (see Fig. 3.1). The coefficient of
kinetic friction between M1 and the plane is µ. M1 is released from rest. Assuming that
M2 is sufficiently large so that M1 gets pulled up the plane, what is the acceleration
of the masses? What is the tension in the string?
Relevant Equations
F=ma
>![figure 3.2](https://physics.codidact.com/uploads/B5XdWq6GbB4vwyADQdALaCrC)![figure 3.1](https://physics.codidact.com/uploads/pkmWFgoesvQaiAfv5yKj6ynB)<br/>
>Mass M1 is held on a plane with inclination
angle θ, and mass M2 hangs over the side. The two masses are connected by a
massless string which runs over a massless pulley (see Fig. 3.1). The coefficient of
kinetic friction between M1 and the plane is µ. M1 is released from rest. Assuming that
M2 is sufficiently large so that M1 gets pulled up the plane, what is the acceleration
of the masses? What is the tension in the string?

Then, they were writing force of that figure.

$$T-f-M_1g\sin \theta = M_1a$$
$$N-M_1g\cos \theta=0$$
$$M_2g-T=M_2a$$

In the second equation they wrote that $$M_1g\cos \theta$$

Usually, $\cos$ is used when we think of $\text{x}$ axis. Since, $$\cos \theta=\frac{\color{blue}\text{base}}{\text{hypotenuse}}$$
But, gravitational force is forever through $\text{y}$ axis. Although, why they used $\cos\theta$ for gravitational force.
 
Physics news on Phys.org
Force is a vector and can be decomposed into components tangential to and normal to a slope. That's why an object tends to move down a slope with less than the free fall acceleration.

As in your other post, it looks like it's the concept of vector components you are missing.
 
Istiakshovon said:
Usually, ##\cos## is used when we think of ##{x}## axis.
That is the case when starting with something (a force, a displacement..) at angle theta to the horizontal and finding the horizontal component: ##x=r\cos(\theta)##.
In this case, we are starting something vertical (weight) and finding its component normal to the slope. That is the same as the angle between the plane and the horizontal.
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K