The only way to solve the 'paradoxes' of calculus is by using rigorous arguments found in real analysis. But at an intuitive level Δx, Δ f(x) = f(x + Δx) - f(x) etc, are simply small changes in x or f(x). dx and df(x) are infinitesimal changes in x and f(x). The difference between small and infinitesimal is simply 'a for all practical purposes' thing. Δx is small but different from 0. dx is also small, but for all practical purposes, it can be considered zero when you want it to be, even though it isn't. Exactly how small depends on the problem being considered, but is it assumed in an intuitive treatment of calculus, such can always be found. The idea is to get around the divide-by-zero thing. If dy and dx were 0, dy/dx would have no meaning. But if infinitesimal, everything is ok. Consider y = x^2. dy/dx = ((x + dx)^2 - x^2)/dx = (x^2 +2xdx +dx^2 - x^2)/dx = 2x + dx. This is where we assume that for all practical purposes dx =0 and get dy/dx = 2x. If we had used Δx instead, you would get Δy/Δx = 2x + Δx - close to but not for all practical purposes the same as 2x. In this way of doing calculus, when we say limit x→c f(x) = z, we mean when x is infinitesimally close to c, but not exactly c even though f(x) may not even be defined at c.
Why not do calculus using real analysis from the start? Real analysis requires some familiarity with rigorous formal proof. For its use in engineering, economics etc., you don't need to study this (for a thinking student, it does solve Zeno's paradox, for example. Start a new thread if interested), so the intuitive approach is done first, and the rigorous approach later for those that need to know it or are interested in knowing it. It's needed for advanced topics like Rigged Hilbert Spaces that those interested in mathematical physics often want to know to make rigorous sense of things like the Dirac Delta function. Still, it is surprising how far you can go with the intuitive approach - even that can be given an intuitive treatment. It usually is - very few people study Rigged Hilbert Spaces. Just nuts like me




.
Thanks
Bill