Work Done by Elevator Cable in Sample Problem 7-6

AI Thread Summary
The work done by the gravitational force in the elevator problem is calculated as 59 kJ, while the work done by the elevator cable is found to be approximately -53 kJ, leading to a discrepancy with the textbook's answer of -47 kJ. The correct approach involves using Newton's second law to derive the tension in the cable and applying the work formula, resulting in the correct work done by the cable. The error in the initial calculation stemmed from incorrectly substituting values in the kinetic energy equation. The discussion highlights the importance of careful substitution and understanding the principles behind the calculations. The thread concludes with acknowledgment of the learning opportunity presented by the problem.
Soyuz42
Messages
2
Reaction score
4
Homework Statement
An elevator cab of mass m=500 kg is descending with speed v_i=4.0 m/s when its supporting cable begins to slip, allowing it to fall with constant acceleration vec{a}=vec{g}/5 (Figure (a)).
The answer to "(a) During a fall through a distance d=12 m, what is the work done on the cab by the gravitational force vec{F_g}?" is 59 kJ. The answer to "(b) During the 12 m fall, what is the work W_T done on the cab by the upward pull of vec{T} of the elevator cable?" is -47 kJ, and the answer is arrived at by using the free body diagram in Fig. (b) to solve for T, and then using that to solve for W_T. using equation (1) below. My question pertains to (b): why do I get a different answer when I use the work-kinetic energy theorem?
Relevant Equations
(1) W=F*d*cos(phi)
(2) K_f = K_i + W (Work-kinetic energy theorem)
(3) W_g = mgd*cos(phi), where phi is the angle between force and displacement.
Fig. 7-10.png

As stated, part (a) says that the work done by the gravitational force ##\vec{F_g}## is 59 kJ. If ##W_T## is the work done by the elevator cable during the 12 m fall, then using the work-kinetic energy theorem,
\begin{align*}
K_f -K_i &= W_g + W_T\\
\frac12m({v_f}^2 - {v_i}^2) &= 59000 + W_T\\
\frac12m(a\Delta d)=5886&=59000 + W_T\\
W_T &\approx -53 \text{ kJ},
\end{align*}
while the answer quoted in the text is ##-47## kJ. Why is there a discrepancy?


Answer to (b) in the textbook

"A key idea here is that we can calculate the work ##W_T## with Eq. 7-7 (##W=Fd\cos\phi##) if we first find an expression for the magnitude ##T## of the cable's pull. A second key idea is that we can find that expression by writing Newton's second law for components along the ##y## axis in Fig. 7-10b (##F_{\text{net},y} = ma_y##). We get $$T-F_g=ma.$$ Solving for ##T##, substituting ##mg## for ##F_g##, and then substituting the result in Eq. 7-7, we obtain $$W_T=Td\cos\phi = m(a+g)d\cos\phi.$$ Next, substituting ##-g/5## for the (downward) acceleration ##a## and then ##180^\circ## for the angle ##\phi## between the directions of forces ##\vec{T}## and ##m\vec{g}##, we find
\begin{align}
W_T&= m\left(-\frac{g}{5} + g\right) d\cos\phi = \frac45mgd\cos\phi\nonumber\\
&=\frac45(500\text{ kg})(9.8 \text{ m/s^2})(12\text{ m})\cos 180^\circ\nonumber\\
&= -4.70\times 10^4 \text{ J} = -47 \text{ kJ}.\tag{Answer}
\end{align}
(The question and figure are from sample problem 7-6, pg. 149 of Fundamentals of Physics 7e, by Halliday et al.)
 
Last edited:
Physics news on Phys.org
Never mind, the method was fine, but I incorrectly substituted ##a\Delta d##, instead of ##2a\Delta d##, for ##{v_f}^2 - {v_i}^2##. I would save face but I do not know how to delete this thread.
 
  • Like
Likes Steve4Physics and berkeman
Soyuz42 said:
Never mind, the method was fine, but I incorrectly substituted ##a\Delta d##, instead of ##2a\Delta d##, for ##{v_f}^2 - {v_i}^2##. I would save face but I do not know how to delete this thread.
No need to delete -- it's an interesting problem. Glad you figured it out.

Welcome to PhysicsForums! :smile:
 
  • Like
Likes SammyS, Steve4Physics and Soyuz42
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top