KleZMeR
- 125
- 0
Homework Statement
Ok, so I've read many of the threads on here and they all say the same thing. I think I understand the Gauss Law and the theory behind the spherical shell.
The question is this:
Find the WORK done bringing a test charge q from infinity to the center of a spherical shell of thickness T, radius R, and surface charge \sigma. Assume the charge passes through an infinitesimal hole in the shell.
Homework Equations
W = q[\phi(inf)-\phi(r)]
The Attempt at a Solution
W_{\infty, R+T} = q[\phi(\infty)-\phi(R+T)] = -\phi(R+T)
and
W_{R+T,0} = q[\phi(R+T)-\phi(0)] = \phi(R+T)
My second equation takes the 'fact' that E(r) = 0 inside the shell, resulting in a zero potential.
The final result is that the total WORK = 0
This is for a graduate class, and this result seems somewhat trivial. My other assumption is that the test charge induces an electric field inside the shell, but I do not think work can be done by moving the test charge through its own electric field? I could be totally wrong, and that's why I'm asking this question.
Any help clarifying my result would be greatly appreciated.