Work to bring a charge to the center of two quarter circles

AI Thread Summary
The discussion revolves around calculating the work required to bring a charge to the center of two quarter circles with opposite linear charge densities. The electric field at point P is derived, leading to the conclusion that the work done is zero due to the condition that the linear charge densities are equal in magnitude but opposite in sign. An intuitive explanation provided indicates that as the charge is brought in along the line y = -x, the electric force acts perpendicular to the motion, resulting in no mechanical work being done. The participants also emphasize the importance of visualizing the arc arrangement for clarity. Overall, the conclusion that the work is zero is confirmed through both mathematical reasoning and intuitive understanding.
lorenz0
Messages
151
Reaction score
28
Homework Statement
Find the electric field at point C, which corresponds to the center of the two arcs of circumference with radius ##𝑅 = 10 cm## with uniform charge densities ##\lambda_1 = + 1nC / m## and ##\lambda_2 = -1 nC / m## respectively.
Also find the work required to bring a charge ##q= 5 \mu C## from infinity to point C.
Relevant Equations
##\vec{E}=\frac{kq}{r^2},\ V(r)=\frac{kq}{r}##
By measuring angle \theta from the positive ##x## axis counterclockwise as usual, I get ##d\vec{E}=k( (\lambda_2-\lambda_1)\cos(\theta)d\theta, (\lambda_2-\lambda_1)\sin(\theta)d\theta )## and by integrating from ##\theta=0## to ##\theta=\frac{\pi}{2}## I get ##\vec{E}(P)=\frac{k(\lambda_1-\lambda_2)}{R}(-1,-1)##.

Now, the work to bring a charge from infinity to point P should be (if we set ##V(\infty)=0##) ##L=qV(P)=q\int_{\theta=0}^{\theta=\pi/2}(\frac{k\lambda_1}{R}+\frac{k\lambda_2}{R})Rd\theta=0##

I am a bit unsure about the work being ##0##, it doesn't feel intuitive to me that it should be: is this correct? Is there an intuitive explanation for the work being ##0##? Thanks
 

Attachments

  • circle.png
    circle.png
    13.5 KB · Views: 140
Physics news on Phys.org
Please post either a diagram or a full description of the arc arrangement.
But just looking at the last line, I do not see how you get zero from that integral.
 
haruspex said:
Please post either a diagram or a full description of the arc arrangement.
But just looking at the last line, I do not see how you get zero from that integral.
I have posted the diagram; I get zero since ##\lambda_1=-\lambda_2##.
 
Last edited:
lorenz0 said:
Is there an intuitive explanation for the work being 0?
If you bring in the charge from infinity over the line ##y = -x##, the electric force is perpendicular to the motion, so no mechanical work is involved.

##\ ##
 
  • Like
Likes PeroK and lorenz0
BvU said:
If you bring in the charge from infinity over the line ##y = -x##, the electric force is perpendicular to the motion, so no mechanical work is involved.

##\ ##
I see, thank you very much!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top