Write f(x) in terms of the unit step function u(x)

Click For Summary

Discussion Overview

The discussion centers on expressing the function f(x) in terms of the unit step function u(x), exploring various definitions and representations of both the step function and f(x). The scope includes mathematical reasoning and definitions related to piecewise functions and their transformations.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant defines the unit step function u(x) and presents f(x) as a piecewise function that equals 1 for certain intervals and 0 elsewhere.
  • Another participant offers an alternative definition of the unit step function, including a value at zero, and proposes a summation representation of f(x) using this definition.
  • A subsequent reply indicates a preference for the original definition of u(x) and provides a summation expression for f(x) based on that definition.
  • Further, a participant reiterates the alternative definition of the unit step function and discusses the Laplace Transform of a related function, noting the relationship between two functions derived from inverse transforms.

Areas of Agreement / Disagreement

Participants express differing definitions of the unit step function and propose various representations of f(x). There is no consensus on a single definition or representation, indicating multiple competing views remain.

Contextual Notes

Some definitions and representations depend on specific interpretations of the unit step function, and the discussion includes unresolved mathematical steps related to the Laplace Transform and its implications.

alexmahone
Messages
303
Reaction score
0
Write f(x) in terms of the unit step function u(x).

$u(x)=\left\{ \begin{array}{rcl} 1\ &\text{if}& \ x\geq 0 \\ 0\ &\text{if}& \ x<0\end{array} \right.$

$f(x)=\left\{ \begin{array}{rcl} 1\ &\text{if}& \ 2n\le x\le 2n+1 \\ 0\ &\text{elsewhere}\end{array} \right.$
 
Physics news on Phys.org
A more useful definition of 'Haeviside Step Function' or 'Unit Step Function' is...

$\mathcal{u}(x)=\begin{cases}1 &\text{if}\ x>0\\ \frac{1}{2} &\text{if}\ x=0\\ 0 &\text{if}\ x<0\end{cases}$ (1)

... and the function...

$f(x)=\begin{cases} 1 &\text{if}\ 2n<x<2n+1\\ \frac{1}{2} &\text{if}\ x=n\\ 0 &\text{elsewhere}\end{cases}$ (2)

... can be written as...

$\displaystyle f(x)= \sum_{n=0}^{\infty} (-1)^{n} \mathcal{u}(x-n)$ (3)

Kind regards

$\chi$ $\sigma$
 
chisigma said:
A more useful definition of 'Haeviside Step Function' or 'Unit Step Function' is...

But I need to use the definition in post #1.

I get $\displaystyle f(x)=\sum_{-\infty}^\infty u(x-2n)u(2n+1-x)$
 
chisigma said:
A more useful definition of 'Haeviside Step Function' or 'Unit Step Function' is...

$\mathcal{u}(x)=\begin{cases}1 &\text{if}\ x>0\\ \frac{1}{2} &\text{if}\ x=0\\ 0 &\text{if}\ x<0\end{cases}$ (1)

... and the function...

$f(x)=\begin{cases} 1 &\text{if}\ 2n<x<2n+1\\ \frac{1}{2} &\text{if}\ x=n\\ 0 &\text{elsewhere}\end{cases}$ (2)

... can be written as...

$\displaystyle f(x)= \sum_{n=0}^{\infty} (-1)^{n} \mathcal{u}(x-n)$ (3)

Kind regards

$\chi$ $\sigma$

It is curious the fact that the function...

$\displaystyle f_{a}(x) =\begin{cases} 1 &\text{if}\ 2n \le x \le 2n+1\\ 0 &\text{elsewhere}\end{cases}$ (1)

... has Laplace Transform...

$\displaystyle \mathcal{L}\{f_{a}(x)\}= F(s)= \frac{1}{s\ (1+e^-s)}$ (2)

... and the (2) has Inverse Laplace Transform...

$\displaystyle \mathcal{L}^{-1}\{F(s)\}= f_{b}(x)=\sum_{n=0}^{\infty} (-1)^{n}\ \mathcal{u}(x-n)$ (3)

... so that for the unicity of the inverse L-transform $f_{a}(x)$ and $f_{b}(x)$ are 'pratically' the same function... where 'pratically' means that the difference between then is a 'null function'...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K