Write f(x) in terms of the unit step function u(x)

Click For Summary
SUMMARY

The discussion focuses on expressing the function f(x) in terms of the unit step function u(x). The unit step function is defined as u(x) = 1 for x ≥ 0 and u(x) = 0 for x < 0. The function f(x) is defined piecewise, taking the value 1 for intervals 2n ≤ x ≤ 2n + 1 and 0 elsewhere. It is established that f(x) can be represented as f(x) = ∑_{n=0}^{∞} (-1)^{n} u(x - n), highlighting the relationship between f(x) and the unit step function.

PREREQUISITES
  • Understanding of piecewise functions
  • Familiarity with the unit step function (Heaviside function)
  • Knowledge of Laplace transforms
  • Basic concepts of infinite series
NEXT STEPS
  • Study the properties of the Heaviside step function in detail
  • Learn about the applications of Laplace transforms in engineering
  • Explore the concept of inverse Laplace transforms
  • Investigate the convergence of infinite series in mathematical analysis
USEFUL FOR

Mathematicians, engineers, and students studying signal processing or control systems who need to understand the application of the unit step function and Laplace transforms in defining piecewise functions.

alexmahone
Messages
303
Reaction score
0
Write f(x) in terms of the unit step function u(x).

$u(x)=\left\{ \begin{array}{rcl} 1\ &\text{if}& \ x\geq 0 \\ 0\ &\text{if}& \ x<0\end{array} \right.$

$f(x)=\left\{ \begin{array}{rcl} 1\ &\text{if}& \ 2n\le x\le 2n+1 \\ 0\ &\text{elsewhere}\end{array} \right.$
 
Physics news on Phys.org
A more useful definition of 'Haeviside Step Function' or 'Unit Step Function' is...

$\mathcal{u}(x)=\begin{cases}1 &\text{if}\ x>0\\ \frac{1}{2} &\text{if}\ x=0\\ 0 &\text{if}\ x<0\end{cases}$ (1)

... and the function...

$f(x)=\begin{cases} 1 &\text{if}\ 2n<x<2n+1\\ \frac{1}{2} &\text{if}\ x=n\\ 0 &\text{elsewhere}\end{cases}$ (2)

... can be written as...

$\displaystyle f(x)= \sum_{n=0}^{\infty} (-1)^{n} \mathcal{u}(x-n)$ (3)

Kind regards

$\chi$ $\sigma$
 
chisigma said:
A more useful definition of 'Haeviside Step Function' or 'Unit Step Function' is...

But I need to use the definition in post #1.

I get $\displaystyle f(x)=\sum_{-\infty}^\infty u(x-2n)u(2n+1-x)$
 
chisigma said:
A more useful definition of 'Haeviside Step Function' or 'Unit Step Function' is...

$\mathcal{u}(x)=\begin{cases}1 &\text{if}\ x>0\\ \frac{1}{2} &\text{if}\ x=0\\ 0 &\text{if}\ x<0\end{cases}$ (1)

... and the function...

$f(x)=\begin{cases} 1 &\text{if}\ 2n<x<2n+1\\ \frac{1}{2} &\text{if}\ x=n\\ 0 &\text{elsewhere}\end{cases}$ (2)

... can be written as...

$\displaystyle f(x)= \sum_{n=0}^{\infty} (-1)^{n} \mathcal{u}(x-n)$ (3)

Kind regards

$\chi$ $\sigma$

It is curious the fact that the function...

$\displaystyle f_{a}(x) =\begin{cases} 1 &\text{if}\ 2n \le x \le 2n+1\\ 0 &\text{elsewhere}\end{cases}$ (1)

... has Laplace Transform...

$\displaystyle \mathcal{L}\{f_{a}(x)\}= F(s)= \frac{1}{s\ (1+e^-s)}$ (2)

... and the (2) has Inverse Laplace Transform...

$\displaystyle \mathcal{L}^{-1}\{F(s)\}= f_{b}(x)=\sum_{n=0}^{\infty} (-1)^{n}\ \mathcal{u}(x-n)$ (3)

... so that for the unicity of the inverse L-transform $f_{a}(x)$ and $f_{b}(x)$ are 'pratically' the same function... where 'pratically' means that the difference between then is a 'null function'...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 8 ·
Replies
8
Views
923
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K