Write probability in terms of shape parameters of beta distribution

Click For Summary
SUMMARY

This discussion focuses on calculating the probability of player A winning a match against player B, given a scoring system where a player must reach 11 points with at least a 2-point margin. The probability of A winning is initially expressed as $$P(A_{wins} \cap y|p)$$, where p is the probability of A winning each point. The discussion proposes drawing p from a beta distribution, leading to a reformulation of the probability using the beta-binomial distribution. The final expression for the probability is $$P(A_{wins} \cap y|\alpha, \beta)$$, which incorporates parameters from the beta distribution.

PREREQUISITES
  • Understanding of probability theory and scoring systems in games.
  • Familiarity with beta distributions and their properties.
  • Knowledge of binomial coefficients and their applications in probability.
  • Experience with mathematical notation and integrals in probability contexts.
NEXT STEPS
  • Study the beta-binomial distribution and its applications in probability theory.
  • Learn about the properties of the beta distribution and how to derive its parameters.
  • Explore integral calculus techniques for evaluating probabilities involving beta distributions.
  • Investigate advanced probability concepts such as Bayesian inference and its relation to beta distributions.
USEFUL FOR

This discussion is beneficial for statisticians, mathematicians, and data scientists interested in probability modeling, particularly in competitive scenarios and game theory. It is also relevant for researchers applying Bayesian methods in their analyses.

hjam24
Messages
4
Reaction score
0
TL;DR
Initially we have a probability of someone winning a game with certain scoring rules. The probability is of winning depends on the probability of winning a point, p, (which is assumed to be constant). The goal is to draw p from a beta distribution and change the formula accordingly
Assume that players A and B play a match where the probability that A will win each point is p, for B its 1-p and a player wins when he reach 11 points by a margin of >= 2The outcome of the match is specified by $$P(y|p, A_{wins})$$
If we know that A wins, his score is specified by B's score; he has necessarily scored max(11, y + 2) points

In the case of y >= 10 we have

$$ P(A_{wins} \cap y|p) = \binom{10 + 10}{10}p^{10}(1-p)^{10}
\cdot[2p(1-p)]^{y-10}\cdot p^ 2$$

The elements represents respectively:
- probability of reaching (10, 10)
- probability of reaching y after (10, 10)
- probability of A winning two times in a row

I would like to change the constant p assumption and draw p from a beta distribution.
The first part can be rewritten as as [beta-binomial](https://en.wikipedia.org/wiki/Beta-binomial_distribution) function:

$$ P(A_{wins} \cap y|\alpha, \beta) =\binom{10+10}{10}\frac{B(10+\alpha, 10+\beta)}{B(\alpha, \beta)} \cdot \space _{...} \cdot \space _{...}$$

The original formula can be simplified to

$$P(A_{wins} \cap y|p) = \binom{10 + 10}{10}p^{12}(1-p)^{10}
\cdot[2p(1-p)]^{y-10}$$

Is it correct to combine the first and third element as follows:

$$ P(A_{wins} \cap y|\alpha, \beta) =\binom{10+10}{10}\frac{B(12+\alpha, 10+\beta)}{B(\alpha, \beta)} \cdot \space _{...} $$
 
Physics news on Phys.org
hjam24 said:
TL;DR Summary: Initially we have a probability of someone winning a game with certain scoring rules. The probability is of winning depends on the probability of winning a point, p, (which is assumed to be constant). The goal is to draw p from a beta distribution and change the formula accordingly

Assume that players A and B play a match where the probability that A will win each point is p, for B its 1-p and a player wins when he reach 11 points by a margin of >= 2The outcome of the match is specified by $$P(y|p, A_{wins})$$
If we know that A wins, his score is specified by B's score; he has necessarily scored max(11, y + 2) points

In the case of y >= 10 we have

$$ P(A_{wins} \cap y|p) = \binom{10 + 10}{10}p^{10}(1-p)^{10}
\cdot[2p(1-p)]^{y-10}\cdot p^ 2$$

The elements represents respectively:
- probability of reaching (10, 10)
- probability of reaching y after (10, 10)
- probability of A winning two times in a row

I would like to change the constant p assumption and draw p from a beta distribution.
The first part can be rewritten as as [beta-binomial](https://en.wikipedia.org/wiki/Beta-binomial_distribution) function:

$$ P(A_{wins} \cap y|\alpha, \beta) =\binom{10+10}{10}\frac{B(10+\alpha, 10+\beta)}{B(\alpha, \beta)} \cdot \space _{...} \cdot \space _{...}$$

The original formula can be simplified to

$$P(A_{wins} \cap y|p) = \binom{10 + 10}{10}p^{12}(1-p)^{10}
\cdot[2p(1-p)]^{y-10}$$

Is it correct to combine the first and third element as follows:

$$ P(A_{wins} \cap y|\alpha, \beta) =\binom{10+10}{10}\frac{B(12+\alpha, 10+\beta)}{B(\alpha, \beta)} \cdot \space _{...} $$
It's not quite a beta-binomial distribution. However you can do a similar integral $$\int_0^1 P(A_{wins}\cap y|\alpha,\beta)Beta(p|\alpha,\beta)$$. Note also that the expression for P further simplifies before you do the integral.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K