I Write probability in terms of shape parameters of beta distribution

Click For Summary
The discussion focuses on calculating the probability of player A winning a match against player B, given a constant probability p of winning each point. The formula for this probability is initially expressed in terms of combinatorial and binomial components. The goal is to modify the assumption of a constant p by drawing it from a beta distribution, leading to a beta-binomial formulation. However, it's noted that the resulting expression is not a true beta-binomial distribution, and an integral approach is suggested to properly incorporate the beta distribution. The conversation emphasizes the need for simplification before applying the integral for accurate results.
hjam24
Messages
4
Reaction score
0
TL;DR
Initially we have a probability of someone winning a game with certain scoring rules. The probability is of winning depends on the probability of winning a point, p, (which is assumed to be constant). The goal is to draw p from a beta distribution and change the formula accordingly
Assume that players A and B play a match where the probability that A will win each point is p, for B its 1-p and a player wins when he reach 11 points by a margin of >= 2The outcome of the match is specified by $$P(y|p, A_{wins})$$
If we know that A wins, his score is specified by B's score; he has necessarily scored max(11, y + 2) points

In the case of y >= 10 we have

$$ P(A_{wins} \cap y|p) = \binom{10 + 10}{10}p^{10}(1-p)^{10}
\cdot[2p(1-p)]^{y-10}\cdot p^ 2$$

The elements represents respectively:
- probability of reaching (10, 10)
- probability of reaching y after (10, 10)
- probability of A winning two times in a row

I would like to change the constant p assumption and draw p from a beta distribution.
The first part can be rewritten as as [beta-binomial](https://en.wikipedia.org/wiki/Beta-binomial_distribution) function:

$$ P(A_{wins} \cap y|\alpha, \beta) =\binom{10+10}{10}\frac{B(10+\alpha, 10+\beta)}{B(\alpha, \beta)} \cdot \space _{...} \cdot \space _{...}$$

The original formula can be simplified to

$$P(A_{wins} \cap y|p) = \binom{10 + 10}{10}p^{12}(1-p)^{10}
\cdot[2p(1-p)]^{y-10}$$

Is it correct to combine the first and third element as follows:

$$ P(A_{wins} \cap y|\alpha, \beta) =\binom{10+10}{10}\frac{B(12+\alpha, 10+\beta)}{B(\alpha, \beta)} \cdot \space _{...} $$
 
Physics news on Phys.org
hjam24 said:
TL;DR Summary: Initially we have a probability of someone winning a game with certain scoring rules. The probability is of winning depends on the probability of winning a point, p, (which is assumed to be constant). The goal is to draw p from a beta distribution and change the formula accordingly

Assume that players A and B play a match where the probability that A will win each point is p, for B its 1-p and a player wins when he reach 11 points by a margin of >= 2The outcome of the match is specified by $$P(y|p, A_{wins})$$
If we know that A wins, his score is specified by B's score; he has necessarily scored max(11, y + 2) points

In the case of y >= 10 we have

$$ P(A_{wins} \cap y|p) = \binom{10 + 10}{10}p^{10}(1-p)^{10}
\cdot[2p(1-p)]^{y-10}\cdot p^ 2$$

The elements represents respectively:
- probability of reaching (10, 10)
- probability of reaching y after (10, 10)
- probability of A winning two times in a row

I would like to change the constant p assumption and draw p from a beta distribution.
The first part can be rewritten as as [beta-binomial](https://en.wikipedia.org/wiki/Beta-binomial_distribution) function:

$$ P(A_{wins} \cap y|\alpha, \beta) =\binom{10+10}{10}\frac{B(10+\alpha, 10+\beta)}{B(\alpha, \beta)} \cdot \space _{...} \cdot \space _{...}$$

The original formula can be simplified to

$$P(A_{wins} \cap y|p) = \binom{10 + 10}{10}p^{12}(1-p)^{10}
\cdot[2p(1-p)]^{y-10}$$

Is it correct to combine the first and third element as follows:

$$ P(A_{wins} \cap y|\alpha, \beta) =\binom{10+10}{10}\frac{B(12+\alpha, 10+\beta)}{B(\alpha, \beta)} \cdot \space _{...} $$
It's not quite a beta-binomial distribution. However you can do a similar integral $$\int_0^1 P(A_{wins}\cap y|\alpha,\beta)Beta(p|\alpha,\beta)$$. Note also that the expression for P further simplifies before you do the integral.
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
2
Views
2K