Undergrad Y'' + y = 0 solution and recursion relation

Click For Summary
The general solution to the differential equation Y'' + y = 0 is identified as y(x) = C1cos(x) + C2sin(x). A recursion relation for the coefficients is given by An+2 = -An / (n+2)(n+1). To demonstrate that this recursion is equivalent to the general solution, one can analyze the power series representation of y(x) and calculate the first few terms based on the recursion. By organizing the coefficients for even and odd n values, the series converges to the known forms of sine and cosine functions. Ultimately, this confirms that the derived recursion relation aligns with the general solution.
Sam D
Messages
3
Reaction score
0
I've found the general solution to be y(x) = C1cos(x) + C2sin(x).

I've also found a recursion relation for the equation to be:

An+2 = -An / (n+2)(n+1)

I now need to show that this recursion relation is equivalent to the general solution. How do I go about doing this?

Any help would be greatly appreciated!
 
Physics news on Phys.org
So is this the recurrence relation for the coefficients ##c_i## in the power series representing the solution: ##y(x)=c_0 + c_1 x + c_2 x^2 \dots## ? It shouldn't be difficult to take the sum of the power series of sine and cosine multiplied by a constant, and then show that the result satisfies both the DE and that recurrence relation.
 
Try calculating the first few terms of the series in terms of ##a_0## and ##a_1##. Hopefully, you'll recognize the resulting two series.
 
  • Like
Likes Sam D
<Moderator's note: Approved as it is more than two weeks since the OP has been seen. Member has been warned not to post full solutions. This is an exception as it closes the thread.>

Let's start from your reccurence relation:

##A_{n+2}=\frac{-A_N}{(n+2)(n+1)}##

First collect even ##n## values:

##A_2= \frac{-A_0}{2.1}##

##A_4= \frac{-A_2}{4.3}=\frac{A_0}{4.3.2.1}=\frac{A_0}{4!}##

##A_6= \frac{-A_4}{6.5}=\frac{-A_0}{6.5.4.3.2.1}=\frac{-A_0}{6!}##

...

Now take odd n values:

##A_3= \frac{-A_1}{3.2}##;

##A_5= \frac{-A_3}{5.4}=\frac{A_1}{5.4.3.2.1}=\frac{A_0}{5!}##

##A_7= \frac{-A_5}{7.6}=\frac{-A_0}{7.6.5.4.3.2.1}=\frac{-A_0}{7!}##

...

So final solution isOn putting the values of ##A_n## in Maclaurin series solution (##y(x)=\sum_{n=0}{ A_n x^n}##),##y(x)=\sum_{n=0}{ \frac{(-1)^n x^{2n}}{ 2n!} + \frac{(-1)^n x^{2n+1}}{ 2n+1!}}##

##y(x)= A_0 \cos (x) + A_1 \sin (x)##
 
Last edited by a moderator:

Similar threads

  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 52 ·
2
Replies
52
Views
8K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K