Blandongstein
- 8
- 0
\[ \int \sin^{12}(7x) \ \cos^{3}(7x) \ dx \]
Ho do I solve this Integral? What can I substitute??
Ho do I solve this Integral? What can I substitute??
sbhatnagar said:\( \displaystyle \int \sin^{12}(7x) \cos^{3}(7x) \ dx = \int \sin^{13}(7x) \{ 1-\sin^2(7x)\}\cos(7x) \ dx\)
Now substitute \( u=\sin(7x) \).
\( \displaystyle \int \sin^{13}(7x) \{ 1-\sin^2(7x)\}\cos(7x) \ dx = \frac{1}{7}\int u^{12}(1-u^2) \ du\)
Can you take it from here?