MHB Yes, your solution is correct. Good job!

Click For Summary
The discussion centers on the calculation of the residue for the function f(z) = e^(-2z)/(z+1)^2 at the pole z = -1. The initial solution provided by the user indicates a residue of -2e^2, which is later corrected by another participant who confirms that the residue is actually 2e^2. They explain this by evaluating the Laurent series at z = -1, showing that the coefficient of t^(-1) is 2e^2. The conversation emphasizes the importance of correctly applying residue theory and the Laurent series in complex analysis. The final consensus is that the user's initial answer was incorrect, and the correct residue is 2e^2.
aruwin
Messages
204
Reaction score
0
Hello.
Can someone check if I got the answer right?

$f(z)=\frac{e^{-2z}}{(z+1)^2}$

My solution:

$f(z)=\frac{e^{-2z}}{(z+1)^2}$
$$Resf(z)_{|z=-1|}=\lim_{{z}\to{-1}}\frac{d}{dz}((z+1)^2\frac{e^{-2z}}{(z+1)^2})$$

$$\lim_{{z}\to{-1}}-2e^{-2z}=-2e^{2}$$
 
Physics news on Phys.org
aruwin said:
Hello.
Can someone check if I got the answer right?

$f(z)=\frac{e^{-2z}}{(z+1)^2}$

My solution:

$f(z)=\frac{e^{-2z}}{(z+1)^2}$
$$Resf(z)_{|z=-1|}=\lim_{{z}\to{-1}}\frac{d}{dz}((z+1)^2\frac{e^{-2z}}{(z+1)^2})$$

$$\lim_{{z}\to{-1}}-2e^{-2z}=-2e^{2}$$

You are right!... in general for a pole of order n z=a is...

$\displaystyle \text{Res}_{z=a}\ f(z) = \frac{1}{(n-1)!}\ \lim_{z \rightarrow a} \frac{d^{n-1}}{d z^{n-1}}\ \{(z-a)^{n}\ f(z)\}\ (1)$

Kind regards

$\chi$ $\sigma$
 
There's always the classic way to do it/check your solution, though : We want to evaluate the Laurent series of

$$\frac{\exp(-2z)}{(1 + z)^2}$$

At $z = -1$. Substituting $1 + z = t$ gives

$$\frac{\exp(2 - 2t)}{t^2} = \frac{e^2}{t^2} \cdot \left ( 1 - 2 \cdot t + 2 t^2 + \mathcal{O}(t^3) \right )= \frac{e^2}{t^2} - \frac{2e^2}{t} + 2e^2 + \mathcal{O}(t) $$

Thus, the residue of the expression (which is the coefficient of $t^{-1}$ in the Laurent series) at $z = -1$ is $2e^2$.
 
Last edited:
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K