Yes, your solution is correct. Good job!

  • Context: MHB 
  • Thread starter Thread starter aruwin
  • Start date Start date
  • Tags Tags
    Residue Singularity
Click For Summary
SUMMARY

The discussion centers on calculating the residue of the function \( f(z) = \frac{e^{-2z}}{(z+1)^2} \) at the pole \( z = -1 \). The correct residue is confirmed to be \( 2e^2 \) through both the limit method and the Laurent series expansion. The limit method involves taking the derivative of the function multiplied by \( (z+1)^2 \) and evaluating it at \( z = -1 \). The discussion also references the general formula for residues at poles of order \( n \).

PREREQUISITES
  • Understanding of complex analysis, specifically residue theory.
  • Familiarity with Laurent series expansions.
  • Knowledge of limits and derivatives in calculus.
  • Experience with exponential functions in complex variables.
NEXT STEPS
  • Study the application of the residue theorem in complex analysis.
  • Learn how to derive residues for higher-order poles.
  • Explore the properties of Laurent series and their convergence.
  • Investigate other functions with poles and their residues, such as \( \frac{1}{(z-a)^n} \).
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on complex analysis, as well as researchers needing to compute residues for various functions.

aruwin
Messages
204
Reaction score
0
Hello.
Can someone check if I got the answer right?

$f(z)=\frac{e^{-2z}}{(z+1)^2}$

My solution:

$f(z)=\frac{e^{-2z}}{(z+1)^2}$
$$Resf(z)_{|z=-1|}=\lim_{{z}\to{-1}}\frac{d}{dz}((z+1)^2\frac{e^{-2z}}{(z+1)^2})$$

$$\lim_{{z}\to{-1}}-2e^{-2z}=-2e^{2}$$
 
Physics news on Phys.org
aruwin said:
Hello.
Can someone check if I got the answer right?

$f(z)=\frac{e^{-2z}}{(z+1)^2}$

My solution:

$f(z)=\frac{e^{-2z}}{(z+1)^2}$
$$Resf(z)_{|z=-1|}=\lim_{{z}\to{-1}}\frac{d}{dz}((z+1)^2\frac{e^{-2z}}{(z+1)^2})$$

$$\lim_{{z}\to{-1}}-2e^{-2z}=-2e^{2}$$

You are right!... in general for a pole of order n z=a is...

$\displaystyle \text{Res}_{z=a}\ f(z) = \frac{1}{(n-1)!}\ \lim_{z \rightarrow a} \frac{d^{n-1}}{d z^{n-1}}\ \{(z-a)^{n}\ f(z)\}\ (1)$

Kind regards

$\chi$ $\sigma$
 
There's always the classic way to do it/check your solution, though : We want to evaluate the Laurent series of

$$\frac{\exp(-2z)}{(1 + z)^2}$$

At $z = -1$. Substituting $1 + z = t$ gives

$$\frac{\exp(2 - 2t)}{t^2} = \frac{e^2}{t^2} \cdot \left ( 1 - 2 \cdot t + 2 t^2 + \mathcal{O}(t^3) \right )= \frac{e^2}{t^2} - \frac{2e^2}{t} + 2e^2 + \mathcal{O}(t) $$

Thus, the residue of the expression (which is the coefficient of $t^{-1}$ in the Laurent series) at $z = -1$ is $2e^2$.
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K