modmix
- 17
- 0
<br /> Thanks a lot, jason.<br /> <br /> <blockquote data-attributes="" data-quote="jasonRF" data-source="post: 4474316" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-title"> jasonRF said: </div> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> I have forgotten what little German I learned in high school. </div> </div> </blockquote>similar to my math skills ,-)<br /> <br /> <blockquote data-attributes="" data-quote="jasonRF" data-source="post: 4474316" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-title"> jasonRF said: </div> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> That document looks great - are you aware of an english translation? </div> </div> </blockquote>As far as I know, text is part of a <a href="http://www.springer.com/engineering/electronics/book/978-3-540-54714-3?token=gbgen&wt_mc=Google-_-Book%20Search-_-Springer-_-DE" target="_blank" class="link link--external" rel="nofollow ugc noopener">Taschenbuch der Hochfrequenztechnik</a>.<br /> <a href="http://www.springer.com/authors?SGWID=0-111-19-36942-0" target="_blank" class="link link--external" rel="nofollow ugc noopener">Apl. Prof. Dr.-Ing. habil. Harald Dalichau</a> was teaching at http://www.unibw.de/eit5/front-page - seems to be retired, though he still appears under http://www.unibw.de/eit5/institut-en. His fon umber isn't active any more. Switchboard didn't know anything about him last week.<br /> <br /> In case g00gle doesn't give a reasonable translation, pls don't hestitate to contact me by pm.<br /> <br /> <blockquote data-attributes="" data-quote="jasonRF" data-source="post: 4474316" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-title"> jasonRF said: </div> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> The formula does assume a dielectric medium of infinite extent, of course, but I thought that was the approximation that the OP was asking for. </div> </div> </blockquote>Yes, I think that will be close enough ,-)<br /> <br /> <blockquote data-attributes="" data-quote="sophiecentaur" data-source="post: 4472578" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-title"> sophiecentaur said: </div> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> P.S. PF does try to deliver when it can! <img src="https://cdn.jsdelivr.net/joypixels/assets/8.0/png/unicode/64/1f609.png" class="smilie smilie--emoji" loading="lazy" width="64" height="64" alt=":wink:" title="Wink :wink:" data-smilie="2"data-shortname=":wink:" /> </div> </div> </blockquote>Good to know that <img src="https://cdn.jsdelivr.net/joypixels/assets/8.0/png/unicode/64/1f642.png" class="smilie smilie--emoji" loading="lazy" width="64" height="64" alt=":smile:" title="Smile :smile:" data-smilie="1"data-shortname=":smile:" /><br /> <br /> UllijasonRF said:This does reduce to the correct formula for R_1=R_2. You just need to use the fact that \cosh^{-1}(2 x^2 - 1) = 2\cosh^{-1}(x)[/itex
