Zero-point energy of diatomic hydrogen (particle in a box)

Mayhem
Messages
411
Reaction score
308
Homework Statement
Can the zero-point energy of diatomic hydrogen be calculated as a sum of the zero-point energies of all particles in the system?
Relevant Equations
##E_1 = h^2/8mL^2##
If we take ##H_2## as a "particle" in a box, can the zero-point energy of the overall molecule be calculated as the sum of the zero-point energies of all particles in ##H_2##?

That is $$E_ {1,H_2}=\frac{2h^2}{8m_{\mathrm{H^+}}L^2} + \frac{2h^2}{8m_{\mathrm{e^-}}L^2}= \frac{h^2}{4L^2}(1/m_{\mathrm{H^+}}+1/m_{\mathrm{e^-}})$$

My reasoning being that in our "ideal" box, the system is isolated, and thus energy must be conserved.
 
Physics news on Phys.org
One hydrogen molecule, two protons and two electrons system, has its ground state for chemical bond.
Say hydrogen molecules are in a box, since they are Bose particles, all remain in the ground state for molecule motion.
The ground state energy of hydrogen molecules in a box seems to be decomposed like that.
 
You may want to consider the "ortho-para" equilibrium for "ground state" calculations.
 
Bystander said:
You may want to consider the "ortho-para" equilibrium for "ground state" calculations.
Explain?
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top