Symmetrizing 3xMetric Tensor: H^{\mu \nu \lambda \kappa \rho \sigma}

  • Thread starter Thread starter Barnak
  • Start date Start date
  • Tags Tags
    Metric
Barnak
Messages
62
Reaction score
0
I need to build a tensor from the product of the metric components, like this (using three factors, not less, not more) :

H^{\mu \nu \lambda \kappa \rho \sigma} = g^{\mu \nu} \, g^{\lambda \kappa} \, g^{\rho \sigma} + g^{\mu \lambda} \, g^{\nu \kappa} \, g^{\rho \sigma} + ...,

however, that H^{\mu \nu \lambda \kappa \rho \sigma} tensor should be fully symmetric under pairs of indices :

H^{\mu \nu \lambda \kappa \rho \sigma} \equiv H^{(\mu \nu) \lambda \kappa \rho \sigma} \equiv H^{\mu \nu (\lambda \kappa) \rho \sigma} \equiv H^{\mu \nu \lambda \kappa (\rho \sigma)}

How can I do that ? Someone know what should be that tensor, explicitely ?

With only two times the metric, it would be easy :

H^{\mu \nu \lambda \kappa} = g^{\mu \nu} \, g^{\lambda \kappa} + g^{\mu \lambda} \, g^{\nu \kappa} + g^{\mu \kappa} \, g^{\nu \lambda}

but I don't know how to do it with three times the metric.
 
Physics news on Phys.org
You have to go through all possible index pairs. So you'd get something like
H^{\mu \nu \lambda \kappa \rho \sigma}= g^{\mu \nu}H^{\lambda \kappa \rho \sigma} + g^{\mu \lambda} H^{\nu \kappa \rho \sigma} + ... where the H with 4 indices is as you calculated and you sum over all possible index pairs containing \mu.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top