Let d(n) denote the number of digits of n in its decimal representation. Evaluate the sum
The actual summation of \frac{1}{d(n)!} looks like
\sum\limits_{n=1}^\infty \frac{1}{d(n)!} = \frac{1}{1!} + \cdots \frac{1}{2!} + \cdots \frac{1}{3!} + \cdots
This can be analytically simplified to
\sum\limits_{n=1}^\infty \frac{1}{d(n)!} = 9(\frac{1}{1!}) + 90(\frac{1}{2!}) + 900(\frac{1}{3!}) + 9000(\frac{1}{4!}) + \cdots
after collecting terms and simplyfing to a summation, the result is
\sum\limits_{n=1}^\infty \frac{1}{d(n)!} = 9(\frac{1}{1!}) + 90(\frac{1}{2!}) + 900(\frac{1}{3!}) + 9000(\frac{1}{4!}) + \cdots = 9\sum\limits_{n=0}^\infty \frac{10^n}{(n+1)!}
Adding all the terms would give us \sum\limits_{n=1}^\infty \frac{1}{d(n)!} = 9\sum\limits_{n=0}^\infty \frac{10^n}{(n+1)!} = 19822.91922
My intuituion tells me that there should be a more simple representation for \sum\limits_{n=0}^\infty \frac{10^n}{(n+1)!}.
Now by definition
e^x = \sum_{n = 0}^{\infty} {x^n \over n!} = 1 + x + {x^2 \over 2!} + {x^3 \over 3!} + {x^4 \over 4!} + \cdots
dividing by x gives us
{e^x\over x} = {1 \over x}\sum_{n = 0}^{\infty} {x^n \over n!} = {1 \over x}[1 + x + {x^2 \over 2!} + {x^3 \over 3!} + {x^4 \over 4!} + \cdots] = 1 + {1 \over x} + {x \over 2!} + {x^2 \over 3!} + {x^3 \over 4!} + \cdots
Now the series (1 + {1 \over x} + {x \over 2!} + {x^2 \over 3!} + {x^3 \over 4!} + \cdots) can be rewritten as \sum_{n = 0}^{\infty} {x^n \over (n+1)!} + {1 \over x}.
So {e^x\over x} = \sum_{n = 0}^{\infty} {x^n \over (n+1)!} + {1 \over x}, and solving for \sum_{n = 0}^{\infty} {x^n \over (n+1)!} gives us
\sum_{n = 0}^{\infty} {x^n \over (n+1)!} = {e^x \over x} - {1 \over x} = {e^x - 1 \over x}
Substituting gives us
\sum\limits_{n=1}^\infty \frac{1}{d(n)!} = 9\sum\limits_{n=0}^\infty \frac{10^n}{(n+1)!} = 9[{e^{10} -1 \over 10}] = {9 \over 10}(e^{10} - 1) which indeed equals 19822.91922.
So in conclusion:
\huge \sum\limits_{n=1}^\infty \frac{1}{d(n)!} = {9 \over 10}(e^{10} - 1)