General Relativity as a non-Abelian gauge theory

masudr
Messages
931
Reaction score
0
It occurred to me that I hadn't seen GR developed as a gauge theory in the same way QCD/electroweak are.

Are there any technical obstacles, or is it reasonably straightforward? And if it is well known, can someone please point me to a reference? Thanks.
 
Physics news on Phys.org
I think GR was actually one of the motivations behind Yang-Mills theories. I could wax poetically for hours about the subject, but any good "geometry for physicists" book will cover it. Basically you introduce an orthonormal frame which connects frame indices to tangent indices, and gauge those indices. So, for instance, your "field strength" is a Lie-algebra valued 2-form, namely the Riemann tensor. The method goes under the "principal bundle" formalism and can get quite heavy. But it is really simple, mathematicians just like to mathemagicate it.

The book by Nakahara is good, the book by Nash and Sen is good but contains a lot of typos. Anyway, it is more a thing about differential geometry than about GR. Ask if you need more.
 
I'll have a look at both. Thanks.
 
It works perfectly fine, especially in the Palatini formalism.

The main issue with the analogy is that the Riemann tensor contains second derivatives of the fundamental field 'entity' (the metric) whereas in the fibre bundle point of view, its really first derivatives
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Replies
2
Views
2K
Replies
7
Views
3K
Replies
23
Views
4K
Replies
6
Views
2K
Replies
54
Views
8K
Replies
10
Views
2K
Back
Top