Electrostatics charge density

AI Thread Summary
The discussion focuses on solving for charge density as a function of radius (r) based on a provided electrostatic field. Participants confirm that the approach taken to find charge density is correct and clarify that the radial unit vector is indeed represented as a bold vector. It is suggested that the final answer may not be further simplified, although the math hasn't been verified. Additionally, it is indicated that E0 can be assumed to be a constant unless specified otherwise, in which case its variation with r, theta, and phi would need to be known. Overall, the thread emphasizes understanding the method for calculating charge density from the electrostatic field.
twotaileddemon
Messages
258
Reaction score
0

Homework Statement



I didn't know how to display a lot of the symbols, so I wrote the problem out in microsoft word, took a screenshot, uploaded it to photobucket, and linked it.
Basically, I have to find the charge density as a function of r given the electrostatic field in the image. Any constants are positive. Bold means it's a vector; ignore the green underline; the del function is upside down - sorry about that.
aphysicswork.jpg

http://img.photobucket.com/albums/v696/talimtails/aphysicswork.jpg

My questions are..
1: Is my work method correct? i.e. is this how you solve for charge density?
2. Is there a way to simplify it more?
3. Is E0 a constant or not? The problem doesn't really say and is ambiguous to me. If it's not, how should I approach it? Thanks.
In all cases... please don't tell me if my answer is right or wrong. YES/NO answers are very much appreciated.

Homework Equations


Relevant equations I used in the image

The Attempt at a Solution


My attempt is in the image. ^_^
 
Last edited:
Physics news on Phys.org
First, is the vector \vec{r} in E meant to be the *unit* vector in the r-direction, or not?
 
Last edited:
Not the gradient, but the divergence. You cannot take the gradient of a vector field.

1. The approach is correct.

2. I don't think your final answer can be simplified, but I haven't checked your math.

3. I think you can assume that E0 is constant, no reason to expect it not to be. If it is not, you have to know how it varies with r, theta and phi.
 
Yes, r at the end in bold is the radial unit vector
I took the divergence of E and assumed spherical for the vector derivative

Thanks for your help!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top