What Temperature Yields a 25% Population Probability at 7.00 eV in Copper?

viviane363
Messages
17
Reaction score
0
Pleas can you help me figure out what I do wrong?
At what temperature is the probability that an energy state at 7.00 eV will be populated equal to 25 percent for copper (EF = 6.95 eV)?
The formula for the fermi-Dirac Distribution is f(E) = 1/(1+e^((E-EF)/kT)) and looking at the problem I figured that f(E) = 25%=0.25 and E-EF=7.00 - 6.95 = 0.05eV
solving for T and found that T=3.2979e21 K, but it doesn't seem to be the right answer, why?
 
Physics news on Phys.org
I think this thread should be move to the homework forum.
Anyway, f(E) is DISTRIBUTION function; not a probability so setting f(E)=0.25 doesn't make sense.

Consider this: How would you calculate the probability that the system is in ANY state?
You already know that this probability is one, but in problems like this it neverthless help to write down the expression.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Back
Top