Realspace and redshift space correlation function questions

AI Thread Summary
The redshift space correlation function is observed to be smaller than the real space correlation function at small scales, while the opposite occurs at large scales. This phenomenon is attributed to the effects of redshift distortions and the nonlinear mapping of galaxy distributions. The two-point correlation function, defined as the excess probability of finding galaxy pairs at a separation r, can be decomposed into perpendicular and parallel components to the line of sight. A referenced paper provides further insights into these correlations. Understanding these differences is crucial for interpreting galaxy clustering in cosmology.
1ytrewq
Messages
5
Reaction score
0
why is the redshift space correlation function smaller than the realspace correlation function at small scales and the opposite on large scales?
 
Space news on Phys.org
could you give a link to some online source where the correlations are defined and this inequality is exhibited? that way everybody will know what you are talking about.
 
well the 2-point correlation function \xi(r) is simply the Fourier transform of the power spectrum and in astronomy it is defined as the excess probability of finding a pair of galaxies at separation r.
the correlation function can be separated into a function of 2 variables by decomposing r as r= sigma + pi which represent perpendicular and parallel to the line of sight respectively.

this paper goes over it a bit: http://iopscience.iop.org/0004-637X/479/1/82/pdf/0004-637X_479_1_82.pdf

i made a plot of \xi(r) vs logr and \xi(sigma,pi) vs logr and found that for small scales, the correlation function in redshift space was smaller than the correlation function in real space and the opposite was true for large scales. I was wondering why this was the case?
 
Thanks,
for what it's worth here is my unauthoritative reaction (eventually someone else will reply, I expect).

I'd say, if I understand you, that this is the kind of thing that happens in all kinds of contexts whenever you have something like a density and you have two ways to plot it and a nonlinear map from one variable to the other.

Change of variable.
 
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
The formal paper is here. The Rutgers University news has published a story about an image being closely examined at their New Brunswick campus. Here is an excerpt: Computer modeling of the gravitational lens by Keeton and Eid showed that the four visible foreground galaxies causing the gravitational bending couldn’t explain the details of the five-image pattern. Only with the addition of a large, invisible mass, in this case, a dark matter halo, could the model match the observations...
Hi, I’m pretty new to cosmology and I’m trying to get my head around the Big Bang and the potential infinite extent of the universe as a whole. There’s lots of misleading info out there but this forum and a few others have helped me and I just wanted to check I have the right idea. The Big Bang was the creation of space and time. At this instant t=0 space was infinite in size but the scale factor was zero. I’m picturing it (hopefully correctly) like an excel spreadsheet with infinite...
Back
Top