Solving absolute value equations

AI Thread Summary
The discussion centers on solving the absolute value equation |2x+6|-|x+3|=|x| by analyzing different cases based on the value of x. Participants clarify that it's essential to evaluate each absolute value expression according to the intervals defined by x, leading to four scenarios. It is established that while some intervals may yield valid equations, others do not produce solutions, particularly when the simplifications lead to contradictions. The only valid solution arises from the case where -3 < x < 0, resulting in x = -3/2. Overall, the approach of examining intervals is correct, but not all intervals will provide valid solutions.
autodidude
Messages
332
Reaction score
0
Is this a correct a way of thinking for solving absolute value equations? Say I have |2x+6|-|x+3|=|x| and want to solve for x, then I have:

For |2x+6|
2x + 6 if x ≥ -3
-2x - 6 if x < -3

For |x+3|
x+3 if x ≥ -3
-x-3 if x<-3

For |x|
x if x ≥ 0
-x if x < 0

Am I supposed to look at the cases where x is in a valid interval? e.g. I can't have 2x+6-(x+3) = x because x can't be equal to or greater than both 0 and 3.

If this is the case, then why can't I have (-2x-6) - (-x+3) = -x? This is where x<-3 and x<0, isn't this valid? If x is less than -3 then it's also less than 0
 
Mathematics news on Phys.org
Yes, that is also a valid equation for x. You just have to look at each case, evaluating one absolute value at a time.
If |2x+6|-|x+3|=|x|, then 2x + 6 - |x + 3| = |x| when x >= -3 and -2x - 6 - |x + 3| = |x| when x < -3.
Now we evaluate |x + 3| in this pair of equations to get four possibilities:
2x + 6 - x - 3 = |x| when x >=-3 and x >= - 3
2x + 6 + x + 3 = |x| when x >=-3 and x < - 3
-2x - 6 - x - 3 = |x| when x < -3 and x >= - 3
-2x - 6 + x + 3 = |x| when x < -3 and x < -3
Out of the four, only the first and last equations correspond to real values of x. Now we evaluate the |x| in each of those two equations to get four possibilities:
2x + 6 - x - 3 = x when x >= -3 and x >= 0
2x + 6 - x - 3 = -x when x >= -3 and x < 0
-2x - 6 + x + 3 = x when x < -3 and x >= 0
-2x - 6 + x + 3 = -x when x < -3 and x < 0
The third equation does not correspond to any values of x, so we now have 3 equations without absolute values whose solutions are the same as those of the original equation with absolute values.
x + 3 = x when x >= 0
x + 3 = -x when x >= -3 and x < 0
-x - 3 = -x when x < -3
Since the first and last equation have no solutions, the middle equation contains the only valid solution for the original equation.
 
The left side can be simplified. |2x+6| - |x+3| = |x+3|.

So you have |x+3| = |x|.

You have 3 cases.
x < -3, -x -3 = -x, (no solution)
-3 < x < 0, x + 3 = -x or x = -3/2
0 < x, x+3 = x, (no solution)
 
Thank you for the replies, I don't want to sound arrogant or anything but at the moment I'm kind of more interested in whether the way I currently think of it is accepted and if it is, why the last part of my initial post doesn't make sense (aside from the fact that you just can't get a solution when you solve it, I'm more interested in the intervals)
 
autodidude said:
Is this a correct a way of thinking for solving absolute value equations? Say I have |2x+6|-|x+3|=|x| and want to solve for x, then I have:

For |2x+6|
2x + 6 if x ≥ -3
-2x - 6 if x < -3

For |x+3|
x+3 if x ≥ -3
-x-3 if x<-3

For |x|
x if x ≥ 0
-x if x < 0
Yes, that's all true.

Am I supposed to look at the cases where x is in a valid interval? e.g. I can't have 2x+6-(x+3) = x because x can't be equal to or greater than both 0 and 3.

If this is the case, then why can't I have (-2x-6) - (-x+3) = -x? This is where x<-3 and x<0, isn't this valid? If x is less than -3 then it's also less than 0
That's perfectly valid. If x< -3, then it is also less than 0 so all three of |2x+6|= -2x- 6, |x+3|= -x-3, and |x|= -x. The equation becomes -2x- 6- (-x- 3)= -x. That gives -x- 9= -x, which, since the two "-x" terms cancel, reduces to -9= 0 which is false for all x. Therefore, there is NO x<-3 satisfying the equation.

If -3< x< 0, |2x+ 6|= 2x+ 6 and |x+3|= x+ 3 but |x| is still -x. The equation becomes 2x+ 6- (x+3)= -x. That gives x+ 3= -x which reduces to 2x= -3= or x= -3/2. Since that is between -3 and 0, that is a valid solution: |2x+6|-|x+3|= |-3+ 6|-|-3/2|= 3- 3/2= 3/2= |-3/2|.

If 0< x, |2x+ 6|= 2x+ 6, |x+3|= x+ 3, and |x|= x. The equation becomes 2x+ 6- (x+3)= x. That gives x+ 3= x or 3= 0. Again, that is not true so there is no x larger than 0 that satisfies the equation.

It is not a matter of "x< -3" not being valid- it is simply that, in that case, the equation reduces to one that has no solution.
 
^ Ah ok, I was thinking all valid intervals yielded valid equations...thank you
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top