Calculating the charge distribution on the surface of an assymetric conductor

Chitran
Messages
2
Reaction score
0
How do I calculate the charge distribution on the surface of any asymmetric closed conducting surface? Is it possible for me to calculate the surface charge density 'σ' as a function of '\bar{r}' the position vector in a spherical co-ordinate system in space, provided I know that the conductor has been qiven a net charge 'Q' and the equation of the conductor in space is ((x/a)^2)+((y/b)^2)+((z/c)^2)=1...
 
Physics news on Phys.org
For any conducting surface you will have to resort to an approximation.

In brief: use a numerical method to establish the Electric field for the system. Use that E field result to establish surface charge distribution.
 
But how do I calculate \bar{E} if I don't know my σ? It's like the chicken egg problem except that it's not what comes first that matters, but I need one to know the other. All I know unfortunately is the shape of the conductor and the total charge Q which according to the uniqueness theorum has a unique way of settling on the surface in the abscence of any external electric field...
 
you don't need to know anything about the charge. Field lines are normal to a conducting surface and themselves normal to equipotentials. This means that you can set up a grid with random starting values for potential and by recalculating each value in turn end up closer to the correct solution.

a quick google gave this http://www.physics.hku.hk/~phys3231/pdf/P1%20-%20Static%20Electric%20Field%20-%20Laplaces%20equation%20in%202D.pdf The 3d process is very similar.

Also http://www.ece.msstate.edu/~donohoe/ece3323analytical_numerical_techniques.pdf you need the last few pages.

The procedure looks hard but really isn't: Though it is a long time since I last did one!
 
Last edited by a moderator:
Just solve Laplace's equation for the potential. You know that the potential on the surface is a constant (which you may as well set to zero) and that the potential at large distances should look like that of a point charge, so you have your 2 boundary conditions. From the potential, you can determine the charge density.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top