The equipotential surface of a system of two unequal charges

  • #1
R A V E N
64
0
Homework Statement
How equation ##\left(x+\frac{d}{k^2-1}\right)^2+y^2=\left(\frac{kd}{k^2-1}\right)^2## is obtained?
Relevant Equations
$$\frac{r_1^2}{r_2^2}=k^2=\frac{(d-x)^2+y^2}{x^2+y^2}$$
$$\left(x+\frac{d}{k^2-1}\right)^2+y^2=\left(\frac{kd}{k^2-1}\right)^2$$
We have a system of two unequal oppositely charged point charges, of which ##q_2## is smaller and ##d## is the distance between charges. There is an equipotential spherical surface of potential ##V=0## that encloses a charge of lesser absolute value. The task is to find parameters of that spherical surface, or more precisely circle, since the system is of course illustrated in two dimensions.

system.png
First we take into consideration arbitrary point ##M(x,y)## where ##V=\frac{1}{4\pi\epsilon}\left(\frac{q_1}{r_1}+\frac{q_2}{r_2}\right)##. If we use ##V=0## it's easy to obtain ##\frac{r_1}{r_2}=-\frac{q_1}{q_2}=k## where ##k## is coeficcient of proportionality.

From the illustration, we can see that ##r_1^2=(d-x)^2+y^2## and ##r_2^2=x^2+y^2##. Then we have ##\frac{r_1^2}{r_2^2}=k^2=\frac{(d-x)^2+y^2}{x^2+y^2}## from which ##\left(x+\frac{d}{k^2-1}\right)^2+y^2=\left(\frac{kd}{k^2-1}\right)^2## is obtained. This equation is the equation of a circle shown in the illustration with coordinates of the circle center ##x_0=-\frac{d}{k^2-1}##, (##|x_0|=\frac{d}{k^2-1}##), and ##y_0=0##. The radius of the circle (equipotential sphere) is ##R=\frac{kd}{k^2-1}=k|x_0|##. How the equation ##\left(x+\frac{d}{k^2-1}\right)^2+y^2=\left(\frac{kd}{k^2-1}\right)^2## is derived?

For ##q_1## we have ##q_1=2Q##
and for ##q_2## we have ##q_2=−Q## which gives ##k=2##, but I don't see how that can help. Also, this problem uses the method of image charges because it comes after the lesson in my textbook where the method of image charges is explained.
 

Attachments

  • system.png
    system.png
    4.7 KB · Views: 22
Last edited:
Physics news on Phys.org
  • #2
Hi,

I think your question

R A V E N said:
How the equation ##\left(x+\frac{d}{k^2-1}\right)^2+y^2=\left(\frac{kd}{k^2-1}\right)^2## is derived?
is asking to explain the steps in 'from which'
R A V E N said:
Then we have ##\ \frac{r_1^2}{r_2^2}=k^2=\frac{(d-x)^2+y^2}{x^2+y^2}\ ##from which ##\ \left(x+\frac{d}{k^2-1}\right)^2+y^2=\left(\frac{kd}{k^2-1}\right)^2\ ## is obtained
right ?

Well, with $$\begin{align*}
k^2&=\frac{(d-x)^2+y^2}{x^2+y^2}\\ \mathstrut \\
k^2 x^2 + k^2 y^2&=x^2 -2dx +d^2 +y^2\\ \mathstrut \\
(k^2-1) x^2 + 2dx -d^2 + (k^2-1) y^2&=0\\ \mathstrut \\
x^2 + \left ({2d\over k^2-1} \right ) \,x - {d^2\over k^2-1} + y^2&=0\\ \mathstrut \\
\left (x + {d\over k^2-1} \right)^2 -\left ({d\over k^2-1}\right )^2 - {d^2\over k^2-1} +y^2 &=0\\ \mathstrut \\
\left (x + {d\over k^2-1} \right)^2 +y^2 &=\left ({d\over k^2-1}\right )^2 + {d^2\over k^2-1}\\ \mathstrut \\
\left (x + {d\over k^2-1} \right)^2 +y^2 &={d^2\over\left ( {k^2-1}\right )^2} + {d^2\left ( k^2-1\right ) \over \left (k^2-1\right )^2} \\ \mathstrut \\
\left (x + {d\over k^2-1} \right)^2 +y^2 &=\left ({dk\over k^2-1} \right )^2
\end{align*}$$
 
  • Wow
  • Informative
  • Like
Likes MatinSAR, DeBangis21 and R A V E N
  • #3
Yes! Thank you very much! Very creative and intelligent answer!
 
  • #4
It's not rocket science,, just a bit of high school math -- and I was really glad the target expression was given.

It also was a good ##\LaTeX## exercise :smile:

##\ ##
 

1. What is an equipotential surface?

An equipotential surface is a surface in which every point has the same electric potential. This means that no work is required to move a charge from one point to another on the surface.

2. How are equipotential surfaces related to electric fields?

Electric field lines are always perpendicular to equipotential surfaces. This means that the electric field is strongest where the equipotential lines are closest together, and weakest where they are farthest apart.

3. How do two unequal charges affect the equipotential surface between them?

For two unequal charges, the equipotential surface will be closer to the smaller charge and farther from the larger charge. This is because the potential decreases as you move away from a positive charge and increases as you move away from a negative charge.

4. How can you determine the shape of the equipotential surface for two unequal charges?

The shape of the equipotential surface for two unequal charges is generally elliptical. The major axis of the ellipse will be aligned with the line connecting the two charges, with the smaller charge at one focus of the ellipse.

5. What is the significance of studying equipotential surfaces in the context of two unequal charges?

Studying equipotential surfaces for two unequal charges helps us understand how electric potential varies in space and how it is affected by the presence of charges. It also provides insights into the behavior of electric fields and the distribution of charges in a system.

Similar threads

  • Advanced Physics Homework Help
Replies
2
Views
268
  • Advanced Physics Homework Help
Replies
11
Views
1K
  • Advanced Physics Homework Help
Replies
11
Views
6K
Replies
4
Views
817
  • Advanced Physics Homework Help
Replies
19
Views
833
  • Advanced Physics Homework Help
Replies
4
Views
922
Replies
16
Views
1K
  • Advanced Physics Homework Help
Replies
3
Views
761
  • Advanced Physics Homework Help
Replies
1
Views
2K
  • Advanced Physics Homework Help
Replies
15
Views
2K
Back
Top