Obtaining Higher Angular Frequencies in QHO Excited States

copernicus1
Messages
98
Reaction score
0
Maybe the answer to this should be obvious, but if the quantum harmonic oscillator has a natural angular frequency \omega_0, why do the excited states vibrate with higher and higher angular frequencies? How do we obtain these frequencies?

Thanks!
 
Physics news on Phys.org
Maybe I didn't understand your question but this is quite the definition of "higher state". In order to increase an harmonic oscillator energy its frequency must grow.
 
Thanks, I think I understand it now. Normally the time-dependent part would look like $$e^{-i\omega t},$$ but I suppose in this case it essentially looks like $$e^{-i(n+1/2)\omega t}.$$ So as the n value increases the frequency will increase. Does this look correct?

Thanks.
 
That's correct. The time-dependent part, in fact, generally is exp(-iHt) so, in your case H=(n+1/2)\hbar\omega and you get exactly what you wrote.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top