Calculating Effective Mass: Expressing as a Fraction of Electron Rest Mass

  • Thread starter Thread starter roam
  • Start date Start date
  • Tags Tags
    Electron Mass
roam
Messages
1,265
Reaction score
12
I am trying to find the effective mass of the electron within the first Brillouin zone in a particular direction in a crystal where the energy of the electron varies with some wave vector ##E(k)=Ak^2+Bk^4##. But I need to express this as a fraction of the electron rest mass.

I know that the effective mass (from Newton's 2nd law) is given by:

##m^* = \frac{\hbar^2}{d^2E/dk^2}##​

At the first Brillouin zone boundary we have ##k =\pi / a##. Also the second derivative of the E(k) is ##\frac{d^2E}{dk^2}=2A+12Bk^2##.

Substituting these in I think the effective mass is:

##m^* = \frac{\hbar^2}{2A+12B (\frac{\pi}{a})^2}##​

Now, how does one express this as a fraction of the electron rest mass m (511 KeV)? :confused:

Any suggestion or correction is appreciated.
 
Physics news on Phys.org
The obvious answer is to divide by ##m_e## so that you have an expression for ##m_*/m_e##. This doesn't make too much sense unless you've been given numerical values for ##A,B,a## though.
 
Yup, you're done if that's all the information provided. Put m_0 in the denominator.
 
Thank you very much for your inputs. Here is what I've got then for effective mass as a fraction of the electron rest mass:

##m^* = \frac{\hbar^2}{(2A+12B (\pi /a)^2) m_e}##
 
Last edited:
roam said:
Thank you very much for your inputs. Here is what I've got then for effective mass as a fraction of the electron rest mass:

##m^* = \frac{\hbar^2}{(2A+12B (\pi /a)^2) m_e}##

Don't you mean m*/m_e for the LHS of the equation?

Zz.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top