Register to reply

Laplace's equation in two dimensions_clyindrical coordinates

by haidara
Tags: coordinates, equation, laplace
Share this thread:
haidara
#1
Nov22-10, 02:44 AM
P: 1
1. The problem statement, all variables and given/known data
an infinitely long thin conducting cylindrical shell(radius R) of surface charge density

[tex]\sigma[/tex]=[tex]\sigma_{1}[/tex]sin(2[tex]\Phi[/tex])+[tex]\sigma_{2}[/tex]cos([tex]\Phi[/tex]).
what are the four boundary conditions for this problem?
using the four boundary conditions and the identification of the coefficients of sin(n[tex]\Phi[/tex])and cos(n[tex]\Phi[/tex])find the expression of the potential inside and outside the cylindrical shell.
2. Relevant equations
the general solution of laplace's equation in this case can be written:
V(r,[tex]\Phi[/tex])=[tex]\sum^{n=1}_{\infty}[/tex][[tex]A_{n}[/tex]cos(n[tex]\Phi[/tex])+
[tex]B_{n}[/tex]sin(n[tex]\Phi[/tex]))r[tex]^{n}[/tex]+(C[tex]_{}n[/tex]cos(n[tex]\Phi[/tex])+D[tex]_{}n[/tex]sin(n[tex]\Phi[/tex])r[tex]^{-n}[/tex]]+A[tex]_{}0[/tex]ln(r)+C[tex]_{}0[/tex].
take C[tex]_{0}[/tex]=0 inside the cylinder
3. The attempt at a solution
Phys.Org News Partner Science news on Phys.org
'Smart material' chin strap harvests energy from chewing
King Richard III died painfully on battlefield
Capturing ancient Maya sites from both a rat's and a 'bat's eye view'

Register to reply

Related Discussions
Hom. heat equation in cylindrical coordinates using Fourier & Laplace transforms Differential Equations 1
Laplace solution in polar coordinates Calculus & Beyond Homework 2
Laplace equation in cylindrical coordinates Differential Equations 9
New Problem about solving a Laplace Equation in cylinder coordinates Advanced Physics Homework 6
The Laplace Equation in Polar Coordinates Calculus & Beyond Homework 2