Fermi-Dirac distribution normalization

Davide82
Messages
32
Reaction score
0
Hi!

I have a little question which is puzzling me.
Maybe it is a very simple question.

It is my understanding that the Fermi-Dirac distribution is a probability density function and, as such, its integral between 0 and infinite should be 1.
When T = 0, the integral gives the chemical potential and so the distribution can be normalized by 1 / \mu.
But if I calculate the integral while T >> 0 I don't understand which could be the normalization factor. Do you have an answer?

Thank you
 
Physics news on Phys.org
No, the Fermi-Dirac distribution is not a true probability distribution. It tells you the probability of occupation of a state at energy E given the chemical potential, which means that for every energy value the value of f(E) has to range between 0 and 1. It does not get normalized in the way that you're thinking.
 
Thank you!
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top