Register to reply

Equivalence of Completeness Properties

Share this thread:
3.1415926535
#1
Feb15-12, 11:41 AM
P: 80
The completeness properties are 1)The least upper bound property, 2)The Nested Intervals Theorem, 3)The Monotone Convergence Theorem, 4)The Bolzano Weierstrass, 5) The convergence of every Cauchy sequence.

I can show 1→2 and 1→3→4→5→1 All I need to prove is 2→3

I therefore need the proof of the Monotone Convergence Theorem using Nested intervals Theorem

The theorems: Nested Interval Theorem(NIT): If [tex]I_{n}=\left [ a_{n},b_{n} \right ][/tex] and[tex]I_{1}\supseteq I_{2}\supseteq I_{3}\supseteq...[/tex] then [tex]\bigcap_{n=1}^{\infty}I_{n}\neq \varnothing[/tex] In addition if [tex]b_{n}-a_{n}\rightarrow 0[/tex] as [tex]n \to \infty[/tex] then [tex]\bigcap_{n=1}^{\infty}I_{n}[/tex] consists of a single point.

Monotone Convergence Theorem(MCN): If [tex]a_{n}[/tex] is a monotone and bounded sequence of real numbers then [tex]a_{n}[/tex] converges.
Phys.Org News Partner Science news on Phys.org
Climate change increases risk of crop slowdown in next 20 years
Researcher part of team studying ways to better predict intensity of hurricanes
New molecule puts scientists a step closer to understanding hydrogen storage
lugita15
#2
Feb15-12, 01:49 PM
P: 1,583
Here's an approach you could try. Let an be a bounded increasing sequence, which means that the sequence has an upper bound b. Then ([an,b]) is a nested sequence of ntervals. Can you take it from here, using properties 1 and 2 to prove 3? And then you can do the analogous thing for bounded decreasing sequences.
3.1415926535
#3
Feb16-12, 10:12 AM
P: 80
Quote Quote by lugita15 View Post
Here's an approach you could try. Let an be a bounded increasing sequence, which means that the sequence has an upper bound b. Then ([an,b]) is a nested sequence of ntervals. Can you take it from here, using properties 1 and 2 to prove 3? And then you can do the analogous thing for bounded decreasing sequences.
If by property 1 you mean the least upper bound property the point here is not to use it!
I want a proof 2-3 without using 1,3,4,5

lugita15
#4
Feb16-12, 10:19 AM
P: 1,583
Equivalence of Completeness Properties

Quote Quote by 3.1415926535 View Post
If by property 1 you mean the least upper bound property the point here is not to use it!
I want a proof 2-3 without using 1,3,4,5
Yes, sorry. I think you may still be able use my suggestion to prove 2 implies 3 without using 1,4, or 5.

On a seperate note, you can try proving 2 implies 5 instead (because you've already proven that 1,3,4, and 5 are equivalent, so the fact that 1 implies 2 and 2 implies 5 means that 2 is equivalent to the rest). One simple strategy is to try constructing a nested sequence of intervals whose lengths go to zero using the elements of a Cauchy sequence.
3.1415926535
#5
Feb16-12, 01:34 PM
P: 80
Quote Quote by lugita15 View Post
Yes, sorry. I think you may still be able use my suggestion to prove 2 implies 3 without using 1,4, or 5.

On a seperate note, you can try proving 2 implies 5 instead (because you've already proven that 1,3,4, and 5 are equivalent, so the fact that 1 implies 2 and 2 implies 5 means that 2 is equivalent to the rest). One simple strategy is to try constructing a nested sequence of intervals whose lengths go to zero using the elements of a Cauchy sequence.
Even though I would like a more direct approach 2-5 will suffice.
Suppose that I want to prove that a Cauchy sequence x_n converges
How can I create a sequence of nested intervals whose lengths go to 0 when x_n is not necessarily monotonous?
lugita15
#6
Feb16-12, 05:41 PM
P: 1,583
Quote Quote by 3.1415926535 View Post
Even though I would like a more direct approach 2-5 will suffice.
Suppose that I want to prove that a Cauchy sequence x_n converges
How can I create a sequence of nested intervals whose lengths go to 0 when x_n is not necessarily monotonous?
It's really quite simple. For convenience, I'll refer to half the length of an interval as it's "radius". Since (x_n) is Cauchy, there exists an x_n1 such that all subsequent elements of the sequence are within an interval I1 of radius r1=1/2 centered at x_n1. And there exists an n2>n1 such that all subsequent elements of the sequence are within an interval I2 centered at x_n2, which is within I1 and has radius r2<1/4. And there exists an n3>n2 such that all subsequent elements are within an interval I3 centered at x_n3, which is within I2 and has radius r3<1/8. I think you get the picture: we have a nested sequence (In) of intervals, with radii rn→0 as n→∞.


Register to reply

Related Discussions
Equivalence relation and equivalence class Precalculus Mathematics Homework 2
Prove Relationship between Equivalence Relations and Equivalence Classes Calculus & Beyond Homework 1
Equivalence of 8 properties in Real Analysis Calculus & Beyond Homework 9
Multiplication Properties of Equivalence Classes Calculus & Beyond Homework 2
Equivalence relations and equivalence classes Differential Geometry 4