JM said:
ghwellsjr said:
x'=γ(vt-vt)=0
So this tells us that it is not all the clocks in the moving frame that the time co-ordinate applies to but only the one at the spatial origin of the moving frame which is where the moving clock that we are considering is located.
George- I don't understand this. Doesn't the synchronization procedure guarantee that all clocks at rest with each other must read the same value of time?
It's not enough that they are at rest with each other--they also must be at rest in the frame in which they were synchronized and they must remain at rest in that frame forever.
JM said:
I tried the idea of following the path of a single clock and using the x transform, but the result is the same, the slow clock formula applies only for the case of x = v t, but there are other relations between x and t for which the moving clock is not slow. See my example in post 42. If moving clocks are always slow then these other values of x and t must be set aside and no event be allowed to occur there. And if events are allowed everywhere in the stationary frame there will be some events where t'-moving is not less than t-stationary.
JM
Remember, Einstein's goal in his paper:
What is the rate of this clock, when viewed from the stationary system?
He's not concerned about the actual time displayed on the clock but how its rate of ticking compares to the rate of ticking of the clocks in the stationary system. You are looking at the actual times on the clocks. What you need to do is what I showed you in my previous post which is to compare two events in both frames where the the clock is stationary in the moving frame and moving in the stationary frame.
So here's the process:
Pick two frames such that frame 1 is moving at v/c with respect to frame 2.
Pick any event in the frame 1. Call this event A1.
Change the time to any other value. Call this event B1.
Transform event A1 to event A2 in frame 2.
Transform event B1 to event B2 in frame 2.
Subtract the time co-ordinates for events A1 and B1 and call this Δt1.
Subtract the time co-ordinates for events A2 and B2 and call this Δt2.
Divide Δt1 by Δt2 and call this TD.
Verify that TD=√(1-v
2/c
2)
Here's an example with [t,x]:
We'll make frame 1 move at .8c with respect to frame 2.
We'll pick A1 to be [1234,5678]
We'll pick B1 to be [4321,5678]
A2 transforms to [-5514,7818]
B2 transforms to [-369,3702]
Δt1 is 1234-4321 = -3087
Δt2 is -5514-(-369) = -5145
TD is Δt1/Δt2 = -3087/(-5145) =
0.6
Verify that TD=√(1-v
2/c
2) = √(1-0.8
2) = √(1-.64) = √(0.36) =
0.6
The only difference between this example and the process that Einstein was doing is that he picked the x co-ordinates for A1 and B1 to be 0 and he picked the time co-ordinate for B1 to also be 0. This just means that he doesn't have to do the subtraction process because the rates of the clocks now are identical to the actual times on the clocks.
So let's repeat with these conditions:
We'll make frame 1 move at .8c with respect to frame 2.
We'll pick A1 to be [1234,0]
We'll pick B1 to be [0,0]
A2 transforms to [2056.667,-1645.333]
B2 transforms to [0,0]
Δt1 is 1234-0 = 1234
Δt2 is 2056.667-0 = 2056.667
TD is Δt1/Δt2 = 1234/2056.667 =
0.6