## what happens to matter near absolute zero

I'm trying to figure out why things happen to objects placed in environments near absolute zero. so let's take an ice cube. In a freezer it will remain stable, I'm guessing because the atoms that make up the ice cube will bounce off atoms in the air that are roughly similar in energy to the atoms that make up the cub. when two atoms collide energies average, the colder one will become warmer and the warmer one will become colder. now, let's put that same ice cub in outer space. it will undergo an enormous change. i'm guessing it is because there are no atoms for the ice cub to bounce off of and with no other atoms to keep it at a high energy and since objects seek their lowest energy state the ice cube will quickly seek it's lowest energy state and rapidly condense. let me know if this portrayal is accurate.
 PhysOrg.com physics news on PhysOrg.com >> Cheap, color, holographic video: Better holographic video displays>> First entanglement between light and optical atomic coherence>> EUROnu project recommends building Neutrino Factory
 Recognitions: Gold Member "environments near absolute zero" is a meaninglessly ambiguous statement. (1) Outer space next to the sun (2) intergalactic space (3) in a lab on earth (4) etc for ice cubes in outer space (assume intergalactic space), look up sublimation
 I don't think "environments near absolute zero" is meaningless, but just unquantified. As in "well, how close to absolute zero do you mean?" I suppose the environment best for getting arbitrarily close to absolute zero would be a hypothetical time/place in which no EM sources are visible and the CMB radiation is redshifted into oblivion. How would an ice cube behave in such an environment? I imagine it would start by losing heat due to black body radiation, and it would be gaining nothing back because of the null CMB. I heard in another thread that sufficiently cold gasses turn into a "Bose-Einstein condensate", but I don't know how that applies to solids. Phinds, do you know if there's a threshold temperature below which water ice doesn't sublime?

## what happens to matter near absolute zero

what i mean by near absolute zero is just simply outer space, 2.7 kelvin

Recognitions:
Gold Member
 Quote by robertjford80 what i mean by near absolute zero is just simply outer space, 2.7 kelvin
2.7K is positively balmy compared to the temperatures we can reach in the lab. Using a modern dilution fridge you can cool LARGE samples (several kg and in principle even more if you are patient) down to about 10 mK (0.001K).

And the answer to your question is: not much. Of course the materials become more brittle, but as long as you don't put them under too much mechanical stress they will just go back to normal when you heat them up again. Glues and similar chemical tend to crack, because of the stress when you cool/heat them but that is just a mechanical effect.

 Quote by f95toli And the answer to your question is: not much. Of course the materials become more brittle, but as long as you don't put them under too much mechanical stress they will just go back to normal when you heat them up again. Glues and similar chemical tend to crack, because of the stress when you cool/heat them but that is just a mechanical effect.
But are my reasons for what happens to ice at 2.7K correct?

Recognitions: