Register to reply

Symetrisation of products of the metric

by Barnak
Tags: metric, products, symetrisation
Share this thread:
Barnak
#1
Nov19-12, 11:03 PM
P: 61
I need to build a tensor from the product of the metric components, like this (using three factors, not less, not more) :

[itex]H^{\mu \nu \lambda \kappa \rho \sigma} = g^{\mu \nu} \, g^{\lambda \kappa} \, g^{\rho \sigma} + g^{\mu \lambda} \, g^{\nu \kappa} \, g^{\rho \sigma} + ...[/itex],

however, that [itex]H^{\mu \nu \lambda \kappa \rho \sigma}[/itex] tensor should be fully symmetric under pairs of indices :

[itex]H^{\mu \nu \lambda \kappa \rho \sigma} \equiv H^{(\mu \nu) \lambda \kappa \rho \sigma} \equiv H^{\mu \nu (\lambda \kappa) \rho \sigma} \equiv H^{\mu \nu \lambda \kappa (\rho \sigma)}[/itex]

How can I do that ? Someone know what should be that tensor, explicitely ?

With only two times the metric, it would be easy :

[itex]H^{\mu \nu \lambda \kappa} = g^{\mu \nu} \, g^{\lambda \kappa} + g^{\mu \lambda} \, g^{\nu \kappa} + g^{\mu \kappa} \, g^{\nu \lambda}[/itex]

but I don't know how to do it with three times the metric.
Phys.Org News Partner Science news on Phys.org
NASA team lays plans to observe new worlds
IHEP in China has ambitions for Higgs factory
Spinach could lead to alternative energy more powerful than Popeye
clamtrox
#2
Nov20-12, 07:10 AM
P: 939
You have to go through all possible index pairs. So you'd get something like
[tex]H^{\mu \nu \lambda \kappa \rho \sigma}= g^{\mu \nu}H^{\lambda \kappa \rho \sigma} + g^{\mu \lambda} H^{\nu \kappa \rho \sigma} + ... [/tex] where the H with 4 indices is as you calculated and you sum over all possible index pairs containing [itex] \mu [/itex].


Register to reply

Related Discussions
Symmetric Property in Metric Spaces Implied by Other Conditions of a Metric Space Calculus & Beyond Homework 1
Having trouble writing down a metric in terms of metric tensor in matrix form? Special & General Relativity 4
Relationships among metric structure, metric tensor, special and general relativity Special & General Relativity 18
Questions concerning cross products, dot products, and polar coordinates Introductory Physics Homework 1