Coefficient of Drag

by omertech
Tags: coefficient, drag
omertech is offline
Jan12-13, 04:29 AM
P: 13

I understood that in low velocities the standrad drag equation:
Could linearized to something like:
I am looking for the drag coefficient(either γ or Cd) for either a prolate or a tri-axial ellipsoid at low velocities (less than 0.5 m/s) in water. I found some papers providing drag coefficients for relatively high velocities but none with drag coefficients for low velocities.

Best regards
Phys.Org News Partner Physics news on
Physicists design quantum switches which can be activated by single photons
'Dressed' laser aimed at clouds may be key to inducing rain, lightning
Higher-order nonlinear optical processes observed using the SACLA X-ray free-electron laser
bigfooted is offline
Jan12-13, 12:26 PM
P: 262
For spheres, the drag coefficient at low velocities can be determined analytically, see e.g. the book of Clift, Grace and Weber - Bubbles, Drops and Particles or Happel and Brenner, Low Reynolds number hydrodynamics. It is
With the Reynolds number
[itex]\mathrm{Re}=\frac{\rho v D}{\mu}[/itex]

Because A is the cross-sectional surface of the sphere, the force can be written as:
[itex]F_d=3\pi \mu D v[/itex], which is known as Stokes' law.

The drag of a nonspherical particle depends on its orientation with respect to the mean flow.

For a prolate with aspect ratio E=b/a and oriented such that that the short axis with length a (from center to edge) is in the direction of the flow, the drag component is approximately
[itex]F_d=1.2\pi \mu (4+E) a v[/itex].

Note that when E=1, then 2a=D and Stokes' result is recovered. The derivation is for instance in Happel and Brenner's book.

Register to reply

Related Discussions
Wind drag, drag coefficient Introductory Physics Homework 0
Drag Force / Drag Coefficient Introductory Physics Homework 5
Drag coefficient Introductory Physics Homework 1
drag coefficient General Physics 1
Fluid Mechanics - Drag coefficient and Pressure coefficient Mechanical Engineering 1