Why is Rabi frequency important in physics?

  • Thread starter KFC
  • Start date
  • Tags
    Frequency
In summary, the Rabi frequency is the frequency at which two-level systems oscillate. It can be anything, depending on the system.
  • #1
KFC
488
4
I am trying to find out the physical significance of Rabi frequency in wiki and some text, but it still hard for me to understand it. So what does Rabi "frequency" really refer to? From the point of physical view (not from dimension), why call it "frequency"?
 
Physics news on Phys.org
  • #2
The term Rabi frequency occurs in several branches of physics, but its most common occurence is in the realm of two-level systems. So imagine some two-level system, which can be properly initialized (a two-level-atom, an electron state and a trion state inside a singly charged quantum dot or whatever).

Now you initialize the system in the upper state and drive the transition resonantly using a resonant laser pulse or something like that. Usually you will see just some random superposition of stimulated emission and some spontaneous emission. But if you are in the strong coupling regime - so the coupling strength is large compared to all mechanisms causing decoherence like spontaneous emission or nonradiative recombination- you will see some coherent energy transfer between the light field and the two-level system. If the two-level system is initially in the excited state, you will have stimulated emission, the system will go to the ground state, you will have stimulated absorption, the system will go to the excited state, you will have stimulated emission again and so on and so on. Therefore the occupation expectation values of the two levels will also oscillate periodically. The frequency of the periodic exchange of energy and of the oscillation of the occupation probabilities is the Rabi frequency.
 
  • #3
So what's the typical value for Rabi frequency?
 
  • #4
KFC said:
So what's the typical value for Rabi frequency?
It can be anything; the typical frequency depends on what type of system it is.
 
  • #5
This is diffivult to say. The exact value depends on the system, the dipole moment of the transition and (for optical transitions) the amplitude of your optical pulse. If you use a pump pulse with higher amplitude, the Rabi frequency will increase, too. This makes it very complicated to determine the frequency experimentally. So the common experimental way to show Rabi oscillations is to measure the time resolved differential transmission in a pump-probe-setup, where the fixed time delay between pump and probe pulse is longer than the pump pulse width, but shorter than the dephasing time.

If one now increases the pump pulse amplitude, the corresponding differential transmission shows oscillations depending on the pump pulse area. Here the pump puls area does not mean some spatial extent, but is measured in radians. So if there is no pump present, the system will not be in an excited state giving a pulse area of 0. Increasing the pump amplitude, at some point you will have a fully excited system at your chosen probe delay, indicating a pump pulse area of pi. Further increasing the pump amplitude will again deexcite the system at your chosen probe delay. So there will again be a minimum in the differential transmission at a pump pulse area of 2 pi. And so on and so on.

See for example Phys. Rev. Lett. 87, 133603 (2001) by Stievater et al. for a more detailed description of what pulse area is.
 

1. What is Rabi frequency?

Rabi frequency refers to the frequency at which an atom or molecule undergoes oscillations between two energy states in response to an external electromagnetic field. It is named after physicist Isidor Rabi who first described this phenomenon in the 1930s.

2. How is Rabi frequency related to the strength of an external field?

The Rabi frequency is directly proportional to the strength of the external field. This means that a stronger field will result in a higher Rabi frequency and a faster transition between energy states.

3. What factors affect the Rabi frequency?

The Rabi frequency is influenced by several factors including the strength of the external field, the frequency of the field, the transition dipole moment of the atom or molecule, and the lifetime of the excited state.

4. What is the significance of Rabi frequency in quantum mechanics?

Rabi frequency plays a crucial role in quantum mechanics as it is used to describe the interactions between atoms or molecules and external electromagnetic fields. It is also used to study the dynamics of quantum systems and to manipulate the energy states of particles.

5. How is Rabi frequency measured?

Rabi frequency is typically measured using a technique called Ramsey interferometry, which involves using a series of pulses to manipulate the energy states of the particles and then measuring the resulting interference pattern. It can also be measured indirectly by observing the absorption or emission of photons by the system.

Similar threads

Replies
7
Views
2K
Replies
6
Views
820
  • Quantum Physics
Replies
1
Views
1K
Replies
78
Views
3K
  • Quantum Physics
Replies
1
Views
963
Replies
26
Views
2K
Replies
16
Views
1K
Replies
4
Views
1K
  • Quantum Physics
Replies
6
Views
735
Replies
1
Views
1K
Back
Top