Laplace Transform equation help

jesuslovesu
Messages
185
Reaction score
0
[SOLVED] Laplace Transform

Homework Statement


Suppose F(s) = \displaystyle\mathcal{L}(f(t))
Show that \displaystyle\mathcal{L}(f(ct)) = 1/c F(s/c)

Homework Equations


The Attempt at a Solution



\displaystyle\mathcal{L}(f(t)) = \int_0^{inf} e^{-st} f(t) dt
\displaystyle\mathcal{L}(f(ct)) = \int_0^{inf} e^{-st} f(ct) dt
I'm not quite sure what to do after this...

I could play around with integration by parts, but in this case I don't think it yields anything useful
\frac{F(ct)}{c} e^{-st} - \int \frac{F(ct)}{c} (-s e^{-st} ) dt

{F(t)e^{-st} + \int F(t) se^{-st} dt}{}
 
Last edited:
Physics news on Phys.org
Suppose u=ct then we get:

\int_0^{ \infty} e^{-st} f(ct)\ \mbox{d}t = \frac{1}{c} \int_0^{\infty}\ e^{\frac{-s}{c} u}\ f(u)\ \mbox{d}u = \frac{1}{c}\ F \left( \frac{s}{c} \right)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top