How Do You Calculate an Infinite Sum of Fractions Involving Limits?

AI Thread Summary
The discussion centers on calculating an infinite sum of fractions involving limits, specifically the limit of a sum that resembles a harmonic series. The original poster, Michael, seeks to determine the limit of a sum defined by a formula that includes constants and converges to a value related to channel capacity in communication schemes. Respondents express skepticism about the convergence of the sum, suggesting it resembles a harmonic series, which typically diverges. They recommend using approximations instead of exact calculations, noting that the sum can be transformed into an integral for easier evaluation. The conversation concludes with gratitude for the insights shared.
miggimig
Messages
3
Reaction score
0
Hi,

actually, I need to calculate an infinite sum of fractions. The problem is that the Limit of the sum is part of the summands. The formula looks like this:

\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n(1 + \lambda + \sigma^2)-i(1+\lambda)},

where 'itex]\sigma[/itex] and \lambda are constants. Numerically, this infinite sum converges to a value that can be interpreted as a first order approximation of a channel capacity for some communication scheme.

My idea to determine this limit is to calculate the finite sum of n terms first. Since, in this case, n is constant, the sum can be written as:

\sum_{i=1}^{n}{\frac{1}{a-ib}}, where a > n b

When it would be possible to find a conversion of this sum, I thought it might also be possible to determine the limit for n to \infty.

If anyone has ideas how to solve the problem, I would be grateful for comments and feedback.

Thanks a lot,

Michael
 
Mathematics news on Phys.org
Are you sure the sum converges? Off hand it looks like (term by term) it converges to a harmonc series, which diverges.
 
The largest summand is 1 / ( n(1+\lambda + \sigma^2) - (1 + \lambda)) and the smallest summand is 1 / (n \sigma^2), so the limit (or limit points, if it doesn't converge) must be between 1 / \sigma^2 and 1 / (1 + \lambda + \sigma^2), so the limit can't diverge to \infty.

For the opening poster -- it is probably much easier to approximate rather than compute exactly. Since the series does resemble the harmonic series, it might be useful to use a well-known approximation (or one of your basic approximation methods if you don't recall it)...
 
\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n(1 + \lambda + \sigma^2)-i(1+\lambda)}\\<br /> =\lim_{n \to \infty} \dfrac{1}{n}\sum_{i=1}^{n} \frac{1}{(1 + \lambda + \sigma^2)-\frac{i}{n}(1+\lambda)}\\<br /> =\int_{0}^{1}\frac{dx}{(1 + \lambda + \sigma^2)-x(1+\lambda)}<br />
 
mathman said:
Are you sure the sum converges? Off hand it looks like (term by term) it converges to a harmonc series, which diverges.

The above sum is similar to a difference of harmonic series. Something like
H_{2n} - H_{n}=\sum_{k=1}^{n} \frac{1}{n+k}
which converges to \ln 2.
 
Thank you all very much! You helped me a lot!
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top