Difference between linear and nonlinear transformation

yaganon
Messages
16
Reaction score
0
right now, my concept for their difference is that linear transformations are 1 to 1, where as nonlinear transformations are not. However, P^n to P^(-1) is a linear transformation, but it's not 1 to 1.

the textbook def of linear transformation is that it must be closed under addition and scale factorization.

I'm confused.
 
Physics news on Phys.org
A linear transformation is just one that satisfies the conditions of linearity:

T(x+y)=T(x)+T(y)
T(ax)=aT(x)

where x and y are vectors, a a scalar. Nothing requires linear transformations to be 1 to 1 (they usually aren't) or nonlinear transformations to not be 1-1
 
yaganon said:
right now, my concept for their difference is that linear transformations are 1 to 1, where as nonlinear transformations are not. However, P^n to P^(-1) is a linear transformation, but it's not 1 to 1.

the textbook def of linear transformation is that it must be closed under addition and scale factorization.

I'm confused.
Yes, you are. It makes no sense to talk about a transformation as being "closed under addition and scale factorization". Only sets are "closed" under given operations, not transformations. A "linear transformation" on a vector space is a function, F(v), such that F(au+ bv)= aF(u)+ bF(v). They are certainly NOT, in general, "one-to-one", as Office Shredder says. For example, any projection is linear but is not one-to-one.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top