What is a process corner and why does it impact semiconductor speed and quality?

Click For Summary
A process corner is a model representing the extremes of variability in semiconductor manufacturing, not a physical corner on a silicon wafer. It captures the statistical distribution of process variables like oxide thickness and doping concentration, which affect chip speed. Variations from the mean speed are categorized into different corners, such as fast-fast (FF) and slow-slow (SS), with temperature influencing performance; for instance, hotter conditions typically slow down digital logic. Different circuits respond variably to these corners, necessitating testing across all process and temperature scenarios to identify the slowest conditions. Understanding process corners is crucial for maintaining production quality and managing design sensitivities.
likephysics
Messages
638
Reaction score
4
What exactly is a process corner. Is it actually the corner on the silicon wafer?
Why does speed vary in process corners?
Is the doping not uniform?
 
Engineering news on Phys.org
No, it's not the corner of the wafer. It is a model of the process which attempts to capture the extremes of the distribution of the process. Think of it this way. Say I process a large number of chips across different wafers. There will be a distribution of speeds in those chips, because process variables like oxide thickness, effective channel length, doping concentration, etc. have statistical distributions. There will then be a mean and a standard deviation associated with this speed distribution. The typical process model is supposed to model the mean speed that you would expect to see, and the process corner models are supposed to capture some variation from the mean. Whether it is a 2-sigma variation from the mean, a 3-sigma variation from the mean, or something else depends on how the models are constructed and how your circuit is designed. It is called a "corner" because if I make a plot of several process variables (for example Tox and Leff), then the corner model is usually from the corner of this 2D plot.

To answer your question about doping uniformity, the answer is no, the doping is not perfectly uniform. Any manufacturing variable in the real world is not perfectly controlled and has a statistical distribution associated with it. Even if the process tools are perfect (and they're not), there are statistical variations of things like the number of atoms in each transistor which are inherently random.
 
phyzguy said:
It is called a "corner" because if I make a plot of several process variables (for example Tox and Leff), then the corner model is usually from the corner of this 2D plot.

Thanks. I have a better understanding now.
But I still did not get the "corner" explanation. Little more detail please.
Are you trying to say the extremes of the plot?

If I have a FF and SS corner. What effect will temperature have on corners.
Will FF become more fast and SS more slow?
 
Attached is a drawing showing, for example, NMOS and PMOS speed with FF, SS, FS, amd SF corners. Yes, temperature is typically on top of this. Digital logic tends to slow down as it gets hotter, so a (S,S,Hot) corner will typically be slower than a (S,S,Room) corner. However, different circuits respond differently, so you usually have to run all process and temperature corners to determine which is the slowest. Also, people tend to think that the faster corners are always better, but some circuits can be too fast at the fast corners (if your circuit has race conditions for instance). Analog circuits tend to have problems at FS and SF corners where device matching can be compromised.
 

Attachments

Thanks. Now I am more informed.
 
A lot of this also comes down to process control variances. A corner will be your worst case for maintaining production quality but some corners have greater sensitivity than others. Related to Design of Experiment also.
 
Thread 'I thought it was only Amazon that sold unsafe junk'
I grabbed an under cabinet LED light today at a big box store. Nothing special. 18 inches in length and made to plug several lights together. Here is a pic of the power cord: The drawing on the box led me to believe that it would accept a standard IEC cord which surprised me. But it's a variation of it. I didn't try it, but I would assume you could plug a standard IEC cord into this and have a double male cord AKA suicide cord. And to boot, it's likely going to reverse the hot and...

Similar threads

Replies
1
Views
2K
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
12K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K