Orion1
- 961
- 3
I am inquiring as to what the theorem function is for the mean product of cross section and velocity for stellar fusion reactions? \langle \sigma v \rangle
Mean product of nuclear fusion cross section and velocity. \langle \sigma v \rangle
Maxwell–Boltzmann probability density function:
f(v) = \sqrt{\frac{2}{\pi}\left(\frac{m}{kT}\right)^3}\, v^2 \exp \left(- \frac{mv^2}{2kT}\right)
The mean speed is the mathematical average of the speed distribution:
\langle v \rangle = \int_0^{\infty} v \, f(v) \, dv = \sqrt{\frac{8kT}{\pi m}}
For a mono-energy beam striking a stationary target, the cross section probability is:
P = n_2 \sigma_2 = n_2 \pi r_2^2
And the reaction rate is:
f = n_1 n_2 \sigma_2 v_1
Reactant number densities:
n_1, n_2
Target total cross section:
\sigma_2 = \sigma_\text{A} + \sigma_\text{S} + \sigma_\text{L} = \pi r_2^2
Mono-energy beam velocity:
v_1
Aggregate area circle radius:
r_2
Stellar nuclear fusion reaction rate (fusions per volume per time):
f = n_1 n_2 \langle \sigma v \rangle
What is the theorem and solution for the mean cross section in stellar nuclear fusion? \langle \sigma \rangle
Is the mean cross section the mathematical average of the cross section distribution?:
\langle \sigma \rangle = \int_0^{\infty} \sigma \, f(\sigma) \, d\sigma = \, \text{?}
[/Color]
Reference:
http://en.wikipedia.org/wiki/Cross_section_(physics)#Nuclear_physics
http://en.wikipedia.org/wiki/Maxwell-Boltzmann_distribution
http://en.wikipedia.org/wiki/Nuclear_fusion#Requirements
Last edited by a moderator: