Register to reply

Convolution Integral Properties

by benfrankballi
Tags: convolution, integral, properties
Share this thread:
benfrankballi
#1
Sep30-11, 09:55 PM
P: 2
how would I show that y'(t) = x(t) * h'(t) and y'(t) = x'(t) * h(t)

I know that in an LTI system y(t) = x(t) * h(t) = [itex]\int[/itex] x([itex]\tau[/itex]) * h(t-[itex]\tau[/itex]) from [itex]\infty[/itex] to -[itex]\infty[/itex]

But how would I go about trying to prove the first two equations?
Phys.Org News Partner Science news on Phys.org
World's largest solar boat on Greek prehistoric mission
Google searches hold key to future market crashes
Mineral magic? Common mineral capable of making and breaking bonds
jackmell
#2
Oct1-11, 05:35 PM
P: 1,666
Why not just differentiate the convolution integral:

[tex]\frac{d}{dt}\int_{-\infty}^{\infty} x(\tau) h(t-\tau)d\tau=\int_{-\infty}^{\infty} x(\tau)h'(t-\tau)d\tau=x(t)*h'(t)[/tex]


Register to reply

Related Discussions
Convolution Integral properties Electrical Engineering 1
Convolution Integral Calculus & Beyond Homework 1
Convolution integral question.. Calculus & Beyond Homework 2
Laplace convolution properties Calculus & Beyond Homework 0
Convolution integral Calculus & Beyond Homework 3