Flat vs. Conformally Flat Spacetime

  • Thread starter Thread starter Airsteve0
  • Start date Start date
  • Tags Tags
    Flat Spacetime
Airsteve0
Messages
80
Reaction score
0
I was wondering if someone wouldn't mind offering me an explanation as to the differences between a flat spacetime versus a conformally flat spacetime (if there even is a difference).
 
Physics news on Phys.org
Imagine that you started with a flat grid of steel mesh and each vertex in the grid is welded nice and rigid at 90 degree angles, but each rod in the grid was a kind of piston that you could lengthen or shorten. That would be a physical analog of a conformal transformation, it preserves angles but not lengths.
 
I would add that you should imagine being able to bend the sides as you lengthen and stretch them, as long as you keep the vertex angles frozen. Varying curvature can be introduced at each point, but the conformal requirement of conformal flatness implies that the curvature can be characterized by a single function on the manifold.

Since, in 2-D, all curvature can be described by a single function, the result is that all 2-manifolds are conformally flat.

In 4-d spacetime, conformal flatness is equivalent to vanishing Weyl tensor. In GR this means that if a vacuum region is conformally flat, it is simply flat.
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top